Suppr超能文献

S6K 在秀丽隐杆线虫生殖干细胞/祖细胞中连接细胞命运、细胞周期和营养感应。

S6K links cell fate, cell cycle and nutrient response in C. elegans germline stem/progenitor cells.

机构信息

Developmental Genetics Program, Helen and Martin Kimmel Center for Stem Cell Biology, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.

出版信息

Development. 2012 Mar;139(5):859-70. doi: 10.1242/dev.074047. Epub 2012 Jan 25.

Abstract

Coupling of stem/progenitor cell proliferation and differentiation to organismal physiological demands ensures the proper growth and homeostasis of tissues. However, in vivo mechanisms underlying this control are poorly characterized. We investigated the role of ribosomal protein S6 kinase (S6K) at the intersection of nutrition and the establishment of a stem/progenitor cell population using the C. elegans germ line as a model. We find that rsks-1 (which encodes the worm homolog of mammalian p70S6K) is required germline-autonomously for proper establishment of the germline progenitor pool. In the germ line, rsks-1 promotes cell cycle progression and inhibits larval progenitor differentiation, promotes growth of adult tumors and requires a conserved TOR phosphorylation site. Loss of rsks-1 and ife-1 (eIF4E) together reduces the germline progenitor pool more severely than either single mutant and similarly to reducing the activity of let-363 (TOR) or daf-15 (RAPTOR). Moreover, rsks-1 acts in parallel with the glp-1 (Notch) and daf-2 (insulin-IGF receptor) pathways, and does not share the same genetic dependencies with its role in lifespan control. We show that overall dietary restriction and amino acid deprivation cause germline defects similar to a subset of rsks-1 mutant phenotypes. Consistent with a link between diet and germline proliferation via rsks-1, loss of rsks-1 renders the germ line largely insensitive to the effects of dietary restriction. Our studies establish the C. elegans germ line as an in vivo model to understand TOR-S6K signaling in proliferation and differentiation and suggest that this pathway is a key nutrient-responsive regulator of germline progenitors.

摘要

干细胞/祖细胞的增殖和分化与机体生理需求相偶联,以确保组织的正常生长和稳态。然而,这种调控的体内机制还知之甚少。我们使用秀丽隐杆线虫的生殖系作为模型,研究了核糖体蛋白 S6 激酶(S6K)在营养和建立干细胞/祖细胞群体中的作用。我们发现 rsks-1(编码哺乳动物 p70S6K 的同源物)在生殖系自主建立生殖系祖细胞库中是必需的。在生殖系中,rsks-1 促进细胞周期进程并抑制幼虫祖细胞分化,促进成年肿瘤生长并需要保守的 TOR 磷酸化位点。rsks-1 和 ife-1(eIF4E)的缺失比单一突变体更严重地减少生殖系祖细胞库,与降低 let-363(TOR)或 daf-15(RAPTOR)的活性相似。此外,rsks-1 与 glp-1(Notch)和 daf-2(胰岛素/IGF 受体)途径平行作用,并且与它在寿命控制中的作用没有相同的遗传依赖性。我们表明,总体饮食限制和氨基酸剥夺会导致与 rsks-1 突变体表型的一部分相似的生殖系缺陷。rsks-1 通过饮食与生殖系增殖之间的联系相一致,rsks-1 的缺失使生殖系对饮食限制的影响基本不敏感。我们的研究确立了秀丽隐杆线虫的生殖系作为一种体内模型,以了解增殖和分化中的 TOR-S6K 信号转导,并表明该途径是生殖系祖细胞的关键营养响应调节剂。

相似文献

1
S6K links cell fate, cell cycle and nutrient response in C. elegans germline stem/progenitor cells.
Development. 2012 Mar;139(5):859-70. doi: 10.1242/dev.074047. Epub 2012 Jan 25.
3
Germline signaling mediates the synergistically prolonged longevity produced by double mutations in daf-2 and rsks-1 in C. elegans.
Cell Rep. 2013 Dec 26;5(6):1600-10. doi: 10.1016/j.celrep.2013.11.018. Epub 2013 Dec 12.
4
drr-2 encodes an eIF4H that acts downstream of TOR in diet-restriction-induced longevity of C. elegans.
Aging Cell. 2010 Aug;9(4):545-57. doi: 10.1111/j.1474-9726.2010.00580.x. Epub 2010 Apr 29.
6
Sensory regulation of the C. elegans germline through TGF-β-dependent signaling in the niche.
Curr Biol. 2012 Apr 24;22(8):712-9. doi: 10.1016/j.cub.2012.02.064. Epub 2012 Apr 5.
7
Insulin signaling promotes germline proliferation in C. elegans.
Development. 2010 Feb;137(4):671-80. doi: 10.1242/dev.042523.

引用本文的文献

1
Notch signaling in germ line stem cells controls reproductive aging in .
PNAS Nexus. 2025 Aug 26;4(8):pgaf220. doi: 10.1093/pnasnexus/pgaf220. eCollection 2025 Aug.
2
Intestinal RICT-1 regulates the larval germline progenitor pool via the vitellogenin VIT-3 in .
bioRxiv. 2025 Jan 9:2025.01.08.632040. doi: 10.1101/2025.01.08.632040.
3
Non-autonomous insulin signaling delays mitotic progression in C. elegans germline stem and progenitor cells.
PLoS Genet. 2024 Dec 23;20(12):e1011351. doi: 10.1371/journal.pgen.1011351. eCollection 2024 Dec.
4
The C. elegans Myc-family of transcription factors coordinate a dynamic adaptive response to dietary restriction.
Geroscience. 2024 Oct;46(5):4827-4854. doi: 10.1007/s11357-024-01197-x. Epub 2024 Jun 15.
5
Higher-order epistasis shapes natural variation in germ stem cell niche activity.
Nat Commun. 2023 May 17;14(1):2824. doi: 10.1038/s41467-023-38527-0.
6
Microbial byproducts determine reproductive fitness of free-living and parasitic nematodes.
Cell Host Microbe. 2022 Jun 8;30(6):786-797.e8. doi: 10.1016/j.chom.2022.03.015. Epub 2022 Apr 11.
8
Meiosis initiation: a story of two sexes in all creatures great and small.
Biochem J. 2021 Oct 29;478(20):3791-3805. doi: 10.1042/BCJ20210412.
9
Reduction of Derlin activity suppresses Notch-dependent tumours in the C. elegans germ line.
PLoS Genet. 2021 Sep 23;17(9):e1009687. doi: 10.1371/journal.pgen.1009687. eCollection 2021 Sep.
10
Germ granule dysfunction is a hallmark and mirror of Piwi mutant sterility.
Nat Commun. 2021 Mar 3;12(1):1420. doi: 10.1038/s41467-021-21635-0.

本文引用的文献

1
An emerging role for TOR signaling in mammalian tissue and stem cell physiology.
Development. 2011 Aug;138(16):3343-56. doi: 10.1242/dev.058230.
3
Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila.
Nature. 2011 Mar 24;471(7339):508-12. doi: 10.1038/nature09867. Epub 2011 Feb 23.
4
Nutrition-responsive glia control exit of neural stem cells from quiescence.
Cell. 2010 Dec 23;143(7):1161-73. doi: 10.1016/j.cell.2010.12.007.
5
Lifespan extension by preserving proliferative homeostasis in Drosophila.
PLoS Genet. 2010 Oct 14;6(10):e1001159. doi: 10.1371/journal.pgen.1001159.
6
TSC1/2 tumour suppressor complex maintains Drosophila germline stem cells by preventing differentiation.
Development. 2010 Aug 1;137(15):2461-9. doi: 10.1242/dev.051466. Epub 2010 Jun 23.
7
Altered signalling from germline to intestine pushes daf-2;pept-1 Caenorhabditis elegans into extreme longevity.
Aging Cell. 2010 Aug;9(4):636-46. doi: 10.1111/j.1474-9726.2010.00591.x. Epub 2010 Jun 9.
8
Specific roles of Target of rapamycin in the control of stem cells and their progeny in the Drosophila ovary.
Development. 2010 Jul;137(13):2117-26. doi: 10.1242/dev.050351. Epub 2010 May 26.
10
Insulin signaling promotes germline proliferation in C. elegans.
Development. 2010 Feb;137(4):671-80. doi: 10.1242/dev.042523.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验