Institute of Environmental and Sustainable Chemistry, TU Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
Chem Asian J. 2012 Mar 5;7(3):466-75. doi: 10.1002/asia.201100740. Epub 2012 Jan 25.
Electroactive microbial biofilms and the microorganisms embedded therein are not only of crucial fundamental interest because they play an important role in redox cycles that occur in nature, they are also attracting increasing attention as key component of microbial bioelectrochemcial systems (BES). In these systems, interconversion of chemical and electrical energy and the associated exchange of electrons between living microbial cells and solid electrodes take place. The fascinating prospects and promise of BES technology have considerably increased the research on electroactive microbial biofilms over recent years. As a consequence, the research community is truly multifaceted, with backgrounds and interests ranging from molecular biology, via chemistry, to engineering. One of the most-important and most-widespread applied electrochemical techniques is cyclic voltammetry (CV). This Focus Review illustrates the power of this electrochemical technique and the versatility of the information that can be gained by its application for the electrochemical freshman. This Review will also pinpoint hurdles in using this technique, especially for the non-electrochemist, and the limitations of present models for data analysis. Because it aims to be a basic introduction, this Review will not discuss the latest intricacies in the field.
电活性微生物生物膜及其内部嵌入的微生物不仅因为它们在自然界中发生的氧化还原循环中起着重要作用而具有至关重要的基础意义,而且还作为微生物电化学系统 (BES) 的关键组成部分吸引了越来越多的关注。在这些系统中,化学能和电能的相互转换以及活微生物细胞和固体电极之间的电子的相关交换发生。BES 技术的迷人前景和承诺近年来大大增加了对电活性微生物生物膜的研究。因此,研究界确实是多方面的,背景和兴趣从分子生物学、化学到工程学都有涉及。最重要和最广泛应用的电化学技术之一是循环伏安法 (CV)。这篇重点综述说明了这种电化学技术的强大功能,以及通过应用该技术获得的信息的多功能性,这对电化学初学者来说非常有用。本综述还将指出使用该技术的障碍,特别是对于非电化学工作者,以及当前数据分析模型的局限性。由于它旨在作为一个基础介绍,所以本综述不会讨论该领域的最新复杂性。