Department of Functional Materials and Electronics, State Research Institute Centre for Physical Sciences and Technology (FTMC), Vilnius, Lithuania.
Front Cell Infect Microbiol. 2024 Sep 24;14:1419570. doi: 10.3389/fcimb.2024.1419570. eCollection 2024.
Microbial biofilms play a pivotal role in microbial infections and antibiotic resistance due to their unique properties, driving the urgent need for advanced methodologies to study their behavior comprehensively across varied environmental contexts. While electrochemical biosensors have demonstrated success in understanding the dynamics of biofilms, scientists are now synergistically merging these biosensors with microfluidic technology. This combined approach offers heightened precision, sensitivity, and real-time monitoring capabilities, promising a more comprehensive understanding of biofilm behavior and its implications. Our review delves into recent advancements in electrochemical biosensors on microfluidic chips, specifically tailored for investigating biofilm dynamics, virulence, and properties. Through a critical examination of these advantages, properties and applications of these devices, the review highlights the transformative potential of this technology in advancing our understanding of microbial biofilms in different settings.
微生物生物膜因其独特的性质在微生物感染和抗生素耐药性中起着关键作用,这促使人们迫切需要先进的方法来全面研究它们在各种环境背景下的行为。虽然电化学生物传感器已经成功地用于理解生物膜的动态,但科学家们现在正在将这些生物传感器与微流控技术协同结合。这种联合方法提供了更高的精度、灵敏度和实时监测能力,有望更全面地了解生物膜的行为及其影响。我们的综述深入探讨了电化学生物传感器在微流控芯片上的最新进展,这些传感器专门用于研究生物膜的动态、毒性和特性。通过对这些设备的优势、特性和应用进行批判性的检查,该综述强调了这项技术在推进我们对不同环境中微生物生物膜的理解方面的变革潜力。