Hospital Marqués de Valdecilla, University of Cantabria, ISCIII (REDINREN 06/16), Fundación Marqués de Valdecilla-IFIMAV, Nephrology Department, Santander, Spain.
Diabetes Care. 2012 Mar;35(3):471-3. doi: 10.2337/dc11-2071. Epub 2012 Jan 25.
Our aim was to analyze the performance of two scores developed for predicting diabetes in nontransplant populations for identifying kidney transplant recipients with a higher new-onset diabetes mellitus after transplantation (NODAT) risk beyond the first year after transplantation.
We analyzed 191 kidney transplants, which had at least 1-year follow-up posttransplant. First-year posttransplant variables were collected to estimate the San Antonio Diabetes Prediction Model (SADPM) and Framingham Offspring Study-Diabetes Mellitus (FOS-DM) algorithm.
Areas under the receiver operating characteristic curve of FOS-DM and SADPM scores to predict NODAT were 0.756 and 0.807 (P < 0.001), respectively. FOS-DM and SADPM scores over 75 percentile (hazard ratio 5.074 and 8.179, respectively, P < 0.001) were associated with NODAT.
Both scores can be used to identify kidney recipients at higher risk for NODAT beyond the first year. SADPM score detects some 25% of kidney transplant patients with an eightfold risk for NODAT.
本研究旨在分析两种专为非移植人群预测糖尿病的评分系统,以确定移植后 1 年以上发生新发糖尿病(NODAT)风险较高的肾移植受者。
我们分析了 191 例至少有 1 年随访的肾移植患者。收集移植后 1 年内的变量,以估算圣安东尼奥糖尿病预测模型(SADPM)和弗雷明汉后代研究-糖尿病(FOS-DM)算法。
FOS-DM 和 SADPM 评分预测 NODAT 的受试者工作特征曲线下面积分别为 0.756 和 0.807(P<0.001)。FOS-DM 和 SADPM 评分超过第 75 百分位数(风险比分别为 5.074 和 8.179,均 P<0.001)与 NODAT 相关。
两种评分系统均能用于识别移植后 1 年以上发生 NODAT 风险较高的肾移植受者。SADPM 评分可检测到约 25%的肾移植患者发生 NODAT 的风险增加 8 倍。