Suppr超能文献

使用基于质谱的代谢组学发现糖尿病肾病的早期生物标志物(芬兰糖尿病肾病研究)。

Discovery of early-stage biomarkers for diabetic kidney disease using ms-based metabolomics (FinnDiane study).

作者信息

van der Kloet F M, Tempels F W A, Ismail N, van der Heijden R, Kasper P T, Rojas-Cherto M, van Doorn R, Spijksma G, Koek M, van der Greef J, Mäkinen V P, Forsblom C, Holthöfer H, Groop P H, Reijmers T H, Hankemeier T

出版信息

Metabolomics. 2012 Feb;8(1):109-119. doi: 10.1007/s11306-011-0291-6. Epub 2011 Feb 24.

Abstract

Diabetic kidney disease (DKD) is a devastating complication that affects an estimated third of patients with type 1 diabetes mellitus (DM). There is no cure once the disease is diagnosed, but early treatment at a sub-clinical stage can prevent or at least halt the progression. DKD is clinically diagnosed as abnormally high urinary albumin excretion rate (AER). We hypothesize that subtle changes in the urine metabolome precede the clinically significant rise in AER. To test this, 52 type 1 diabetic patients were recruited by the FinnDiane study that had normal AER (normoalbuminuric). After an average of 5.5 years of follow-up half of the subjects (26) progressed from normal AER to microalbuminuria or DKD (macroalbuminuria), the other half remained normoalbuminuric. The objective of this study is to discover urinary biomarkers that differentiate the progressive form of albuminuria from non-progressive form of albuminuria in humans. Metabolite profiles of baseline 24 h urine samples were obtained by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) to detect potential early indicators of pathological changes. Multivariate logistic regression modeling of the metabolomics data resulted in a profile of metabolites that separated those patients that progressed from normoalbuminuric AER to microalbuminuric AER from those patients that maintained normoalbuminuric AER with an accuracy of 75% and a precision of 73%. As this data and samples are from an actual patient population and as such, gathered within a less controlled environment it is striking to see that within this profile a number of metabolites (identified as early indicators) have been associated with DKD already in literature, but also that new candidate biomarkers were found. The discriminating metabolites included acyl-carnitines, acyl-glycines and metabolites related to tryptophan metabolism. We found candidate biomarkers that were univariately significant different. This study demonstrates the potential of multivariate data analysis and metabolomics in the field of diabetic complications, and suggests several metabolic pathways relevant for further biological studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-011-0291-6) contains supplementary material, which is available to authorized users.

摘要

糖尿病肾病(DKD)是一种极具破坏性的并发症,估计影响三分之一的1型糖尿病(DM)患者。一旦疾病被诊断出来就无法治愈,但在亚临床阶段进行早期治疗可以预防或至少阻止疾病进展。DKD在临床上被诊断为尿白蛋白排泄率(AER)异常升高。我们假设尿液代谢组的细微变化先于AER出现具有临床意义的升高。为了验证这一点,芬兰糖尿病研究招募了52名AER正常(正常白蛋白尿)的1型糖尿病患者。经过平均5.5年的随访,一半受试者(26名)从正常AER进展为微量白蛋白尿或DKD(大量白蛋白尿),另一半仍保持正常白蛋白尿。本研究的目的是发现能够区分人类蛋白尿进展形式与非进展形式的尿液生物标志物。通过气相色谱 - 质谱联用(GC - MS)和液相色谱 - 质谱联用(LC - MS)获得基线24小时尿液样本的代谢物谱,以检测病理变化的潜在早期指标。代谢组学数据的多变量逻辑回归建模得出了一组代谢物谱,该谱能够将从正常白蛋白尿AER进展为微量白蛋白尿AER的患者与维持正常白蛋白尿AER的患者区分开来,准确率为75%,精确率为73%。由于这些数据和样本来自实际患者群体,且是在控制较少的环境中收集的,令人惊讶的是,在这个谱中,许多代谢物(被确定为早期指标)在文献中已经与DKD相关联,但也发现了新的候选生物标志物。具有鉴别作用的代谢物包括酰基肉碱、酰基甘氨酸以及与色氨酸代谢相关的代谢物。我们发现了单变量具有显著差异的候选生物标志物。本研究证明了多变量数据分析和代谢组学在糖尿病并发症领域的潜力,并提出了几条与进一步生物学研究相关的代谢途径。电子补充材料:本文的在线版本(doi:10.1007/s11306 - 011 - 0291 - 6)包含补充材料,授权用户可获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e704/3258399/4dd84e8d0a05/11306_2011_291_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验