Chemical and Systems Biology, Stanford University, Stanford, California, United States of America.
PLoS One. 2012;7(1):e30022. doi: 10.1371/journal.pone.0030022. Epub 2012 Jan 18.
Coevolving residues in a multiple sequence alignment provide evolutionary clues of biophysical interactions in 3D structure. Despite a rich literature describing amino acid coevolution within or between proteins and nucleic acid coevolution within RNA, to date there has been no direct evidence of coevolution between protein and RNA. The ribosome, a structurally conserved macromolecular machine composed of over 50 interacting protein and RNA chains, provides a natural example of RNA/protein interactions that likely coevolved. We provide the first direct evidence of RNA/protein coevolution by characterizing the mutual information in residue triplets from a multiple sequence alignment of ribosomal protein L22 and neighboring 23S RNA. We define residue triplets as three positions in the multiple sequence alignment, where one position is from the 23S RNA and two positions are from the L22 protein. We show that residue triplets with high mutual information are more likely than residue doublets to be proximal in 3D space. Some high mutual information residue triplets cluster in a connected series across the L22 protein structure, similar to patterns seen in protein coevolution. We also describe RNA nucleotides for which switching from one nucleotide to another (or between purines and pyrimidines) results in a change in amino acid distribution for proximal amino acid positions. Multiple crystal structures for evolutionarily distinct ribosome species can provide structural evidence for these differences. For one residue triplet, a pyrimidine in one species is a purine in another, and RNA/protein hydrogen bonds are present in one species but not the other. The results provide the first direct evidence of RNA/protein coevolution by using higher order mutual information, suggesting that biophysical constraints on interacting RNA and protein chains are indeed a driving force in their evolution.
在多重序列比对中共同进化的残基为 3D 结构中的生物物理相互作用提供了进化线索。尽管有丰富的文献描述了蛋白质内部或蛋白质之间的氨基酸协同进化以及 RNA 内部的核苷酸协同进化,但迄今为止,还没有蛋白质和 RNA 之间协同进化的直接证据。核糖体是一种结构保守的大分子机器,由 50 多个相互作用的蛋白质和 RNA 链组成,为 RNA/蛋白质相互作用的协同进化提供了一个自然的例子。我们通过对核糖体蛋白 L22 和相邻 23S RNA 的多重序列比对中残基三联体的互信息进行特征描述,提供了 RNA/蛋白质协同进化的第一个直接证据。我们将残基三联体定义为多重序列比对中的三个位置,其中一个位置来自 23S RNA,两个位置来自 L22 蛋白。我们表明,互信息高的残基三联体比残基二联体更有可能在 3D 空间中接近。一些高互信息残基三联体在 L22 蛋白结构中呈连续系列聚类,类似于蛋白质协同进化中看到的模式。我们还描述了 RNA 核苷酸,从一种核苷酸转变为另一种核苷酸(或嘌呤和嘧啶之间)会导致邻近氨基酸位置的氨基酸分布发生变化。进化上不同的核糖体物种的多个晶体结构可以为这些差异提供结构证据。对于一个残基三联体,一种物种中的嘧啶在另一种物种中是嘌呤,并且一种物种中存在 RNA/蛋白质氢键,而另一种物种中不存在。这些结果通过使用高阶互信息提供了 RNA/蛋白质协同进化的第一个直接证据,表明相互作用的 RNA 和蛋白质链的生物物理约束确实是它们进化的驱动力。