Laboratory of Entomology, Wageningen University, 6700 EH Wageningen, The Netherlands.
Phytochemistry. 2012 May;77:162-70. doi: 10.1016/j.phytochem.2012.01.005. Epub 2012 Jan 24.
Glucosinolates (GLS) are secondary plant metabolites that as a result of tissue damage, for example due to herbivory, are hydrolysed into toxic compounds that negatively affect generalist herbivores. Specialist herbivores have evolved specific adaptations to detoxify GLS or inhibit the formation of toxic hydrolytic products. Although rarely studied, GLS and their breakdown products may also affect parasitoids. The objectives were to test the effects of GLS in a multitrophic system consisting of the generalist herbivore Spodoptera exigua, the specialist herbivore Pieris rapae, and the endoparasitoid Hyposoter ebeninus. Three ecotypes of Arabidopsis thaliana that differ in their GLS composition and concentrations and one transformed line that constitutively produces higher concentrations of aliphatic GLS were used, the latter allowing a direct assessment of the effects of aliphatic GLS on insect performance. Feeding by the generalist S. exigua and the specialist P. rapae induced both higher aliphatic and indole GLS concentrations in the A. thaliana ecotypes, although induction was stronger for indole than aliphatic GLS. For both herbivores a negative correlation between performance and aliphatic GLS concentrations was observed. This suggests that the specialist, despite containing a nitrile-specifier protein (NSP) that diverts GLS degradation from toxic isothiocyanates to less toxic nitriles, cannot completely inhibit the formation of toxic GLS hydrolytic products, or that the costs of this mechanism are higher at higher GLS concentrations. Surprisingly, performance of the parasitoid was positively correlated with higher concentrations of aliphatic GLS in the plant, possibly caused by negative effects on host immune responses. Our study indicates that GLS can not only confer resistance against herbivores directly, but also indirectly by increasing the performance of the parasitoids of these herbivores.
硫代葡萄糖苷(GLS)是植物次生代谢物,由于组织损伤,例如由于草食性,它们会水解成有毒化合物,对一般草食性动物产生负面影响。专食性草食动物已经进化出特定的适应机制来解毒 GLS 或抑制有毒水解产物的形成。尽管很少有研究,但 GLS 及其分解产物也可能影响寄生蜂。本研究的目的是在一个包含广食性昆虫斜纹夜蛾、专食性昆虫菜粉蝶和内寄生蜂甘蓝夜蛾的多营养层系统中测试 GLS 的影响。我们使用了三种拟南芥生态型,它们在 GLS 组成和浓度上存在差异,以及一种组成型产生更高浓度脂肪族 GLS 的转化系,后者允许直接评估脂肪族 GLS 对昆虫表现的影响。广食性昆虫斜纹夜蛾和专食性昆虫菜粉蝶的取食诱导了拟南芥生态型中更高的脂肪族和吲哚 GLS 浓度,尽管吲哚 GLS 的诱导作用强于脂肪族 GLS。对于这两种草食性昆虫,都观察到它们的表现与脂肪族 GLS 浓度呈负相关。这表明,尽管专食性昆虫含有一种腈特异性蛋白(NSP),可以将 GLS 降解从有毒异硫氰酸盐转移到毒性较低的腈,但它不能完全抑制有毒 GLS 水解产物的形成,或者这种机制的成本在 GLS 浓度较高时更高。令人惊讶的是,寄生蜂的表现与植物中更高的脂肪族 GLS 浓度呈正相关,这可能是由于对宿主免疫反应的负面影响。我们的研究表明,GLS 不仅可以直接赋予植物抗草食性的能力,还可以通过增加这些草食性昆虫的寄生蜂的表现来间接赋予植物抗草食性的能力。