Biomedical Engineering Department, Natural Sciences II, Room 3201, University of California, Irvine, Irvine, CA 92697-2715, USA.
Integr Biol (Camb). 2012 Apr;4(4):431-9. doi: 10.1039/c2ib00120a. Epub 2012 Jan 26.
Reciprocal mechanical interactions between cells and the extracellular matrix (ECM) are thought to play important instructive roles in branching morphogenesis. However, most studies to date have failed to characterize these interactions on a length scale relevant to cells, especially in three-dimensional (3D) matrices. Here we utilized two complementary methods, spatio-temporal image correlation spectroscopy (STICS) and laser optical tweezers-based active microrheology (AMR), to quantify endothelial cell (EC)-mediated deformations of individual ECM elements and the local ECM mechanical properties, respectively, during the process of capillary morphogenesis in a 3D cell culture model. In experiments in which the ECM density was systematically varied, STICS revealed that the rate at which ECs deformed individual ECM fibers on the microscale positively correlated with capillary sprouting on the macroscale. ECs expressing constitutively active V14-RhoA displaced individual matrix fibers at significantly faster rates and displayed enhanced capillary sprouting relative to wild-type cells, while those expressing dominant-negative N19-RhoA behaved in an opposite fashion. In parallel, AMR revealed a local stiffening of the ECM proximal to the tips of sprouting ECs. By quantifying the dynamic physical properties of the cell-ECM interface in both space and time, we identified a correlation linking ECM deformation rates and local ECM stiffening at the microscale with capillary morphogenesis at the macroscale.
细胞与细胞外基质(ECM)之间的相互机械作用被认为在分支形态发生中发挥着重要的指导作用。然而,迄今为止的大多数研究都未能在与细胞相关的长度尺度上描述这些相互作用,特别是在三维(3D)基质中。在这里,我们利用两种互补的方法,时空相关光谱(STICS)和基于激光光镊的主动微流变学(AMR),分别定量了内皮细胞(EC)在 3D 细胞培养模型中毛细血管形态发生过程中单个 ECM 元件的介导变形和局部 ECM 力学性质。在 ECM 密度被系统改变的实验中,STICS 揭示了 EC 在微观尺度上变形单个 ECM 纤维的速度与宏观尺度上毛细血管发芽的速度呈正相关。与野生型细胞相比,表达组成型激活的 V14-RhoA 的 EC 以明显更快的速度置换单个基质纤维,并表现出增强的毛细血管发芽,而表达显性负性 N19-RhoA 的 EC 则表现出相反的行为。同时,AMR 揭示了在发芽 EC 尖端附近 ECM 的局部变硬。通过在空间和时间上定量细胞-ECM 界面的动态物理性质,我们确定了一个关联,将 ECM 变形速度和微观尺度上的局部 ECM 变硬与宏观尺度上的毛细血管形态发生联系起来。