Suppr超能文献

用于血脑屏障建模的材料。

Materials for blood brain barrier modeling .

作者信息

Ferro Magali P, Heilshorn Sarah C, Owens Roisin M

机构信息

Department of Bioelectronics, Mines Saint-Étienne, 880 route de Mimet, F-13541, Gardanne, France.

Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.

出版信息

Mater Sci Eng R Rep. 2020 Apr;140. doi: 10.1016/j.mser.2019.100522. Epub 2020 Jan 6.

Abstract

Brain homeostasis relies on the selective permeability property of the blood brain barrier (BBB). The BBB is formed by a continuous endothelium that regulates exchange between the blood stream and the brain. This physiological barrier also creates a challenge for the treatment of neurological diseases as it prevents most blood circulating drugs from entering into the brain. cell models aim to reproduce BBB functionality and predict the passage of active compounds through the barrier. In such systems, brain microvascular endothelial cells (BMECs) are cultured in contact with various biomaterial substrates. However, BMEC interactions with these biomaterials and their impact on BBB functions are poorly described in the literature. Here we review the most common materials used to culture BMECs and discuss their potential impact on BBB integrity . We investigate the biophysical properties of these biomaterials including stiffness, porosity and material degradability. We highlight a range of synthetic and natural materials and present three categories of cell culture dimensions: cell monolayers covering non-degradable materials (2D), cell monolayers covering degradable materials (2.5D) and vascularized systems developing into degradable materials (3D).

摘要

脑稳态依赖于血脑屏障(BBB)的选择性通透特性。血脑屏障由连续的内皮细胞构成,调节着血流与脑之间的物质交换。这种生理屏障也给神经疾病的治疗带来了挑战,因为它会阻止大多数血液循环中的药物进入大脑。细胞模型旨在重现血脑屏障的功能,并预测活性化合物透过该屏障的情况。在这类系统中,脑微血管内皮细胞(BMECs)与各种生物材料底物接触培养。然而,文献中对BMECs与这些生物材料的相互作用及其对血脑屏障功能的影响描述甚少。在此,我们综述了用于培养BMECs的最常见材料,并讨论它们对血脑屏障完整性的潜在影响。我们研究了这些生物材料的生物物理特性,包括硬度、孔隙率和材料降解性。我们重点介绍了一系列合成材料和天然材料,并呈现了三类细胞培养维度:覆盖不可降解材料的细胞单层(二维)、覆盖可降解材料的细胞单层(2.5维)以及向可降解材料发展的血管化系统(三维)。

相似文献

1
Materials for blood brain barrier modeling .
Mater Sci Eng R Rep. 2020 Apr;140. doi: 10.1016/j.mser.2019.100522. Epub 2020 Jan 6.
3
4
Human iPS-derived blood-brain barrier model exhibiting enhanced barrier properties empowered by engineered basement membrane.
Biomaterials. 2023 Feb;293:121983. doi: 10.1016/j.biomaterials.2022.121983. Epub 2022 Dec 23.
5
Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening.
Biotechnol Bioeng. 2017 Jan;114(1):184-194. doi: 10.1002/bit.26045. Epub 2016 Jul 21.
6
Endothelial Sphingosine-1-Phosphate Receptor 4 Regulates Blood-Brain Barrier Permeability and Promotes a Homeostatic Endothelial Phenotype.
J Neurosci. 2022 Mar 9;42(10):1908-1929. doi: 10.1523/JNEUROSCI.0188-21.2021. Epub 2021 Dec 13.
9
Simple and efficient protocol to isolate and culture brain microvascular endothelial cells from newborn mice.
Front Cell Neurosci. 2022 Oct 13;16:949412. doi: 10.3389/fncel.2022.949412. eCollection 2022.
10
Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs).
Fluids Barriers CNS. 2017 Aug 4;14(1):20. doi: 10.1186/s12987-017-0068-z.

引用本文的文献

2
Biomaterials for neuroengineering: applications and challenges.
Regen Biomater. 2025 Feb 21;12:rbae137. doi: 10.1093/rb/rbae137. eCollection 2025.
4
Human BBB-on-a-chip reveals barrier disruption, endothelial inflammation, and T cell migration under neuroinflammatory conditions.
Front Mol Neurosci. 2023 Sep 25;16:1250123. doi: 10.3389/fnmol.2023.1250123. eCollection 2023.
5
A Rapid-Patterning 3D Vessel-on-Chip for Imaging and Quantitatively Analyzing Cell-Cell Junction Phenotypes.
Bioengineering (Basel). 2023 Sep 13;10(9):1080. doi: 10.3390/bioengineering10091080.
6
Biofabrication methods for reconstructing extracellular matrix mimetics.
Bioact Mater. 2023 Sep 9;31:475-496. doi: 10.1016/j.bioactmat.2023.08.018. eCollection 2024 Jan.
7
Applications and Considerations for Microfluidic Systems To Model the Blood-Brain Barrier.
ACS Appl Bio Mater. 2023 Sep 18;6(9):3617-3632. doi: 10.1021/acsabm.3c00364. Epub 2023 Aug 15.
9
A human-derived neurovascular unit model to study the effects of cellular cross-talk and soluble factors on barrier integrity.
Front Cell Neurosci. 2022 Dec 1;16:1065193. doi: 10.3389/fncel.2022.1065193. eCollection 2022.
10
Human mini-blood-brain barrier models for biomedical neuroscience research: a review.
Biomater Res. 2022 Dec 16;26(1):82. doi: 10.1186/s40824-022-00332-z.

本文引用的文献

1
Electron Microscopy for 3D Scaffolds-Cell Biointerface Characterization.
Adv Biosyst. 2019 Feb;3(2):e1800103. doi: 10.1002/adbi.201800103. Epub 2018 Oct 9.
3
Endothelial Cell Mechanotransduction in the Dynamic Vascular Environment.
Adv Biosyst. 2019 Feb;3(2):e1800252. doi: 10.1002/adbi.201800252. Epub 2018 Nov 25.
4
A Novel Transwell Blood Brain Barrier Model Using Primary Human Cells.
Front Cell Neurosci. 2019 Jun 6;13:230. doi: 10.3389/fncel.2019.00230. eCollection 2019.
6
3D Hybrid Scaffolds Based on PEDOT:PSS/MWCNT Composites.
Front Chem. 2019 May 21;7:363. doi: 10.3389/fchem.2019.00363. eCollection 2019.
7
Organic transistor platform with integrated microfluidics for in-line multi-parametric cell monitoring.
Microsyst Nanoeng. 2017 Aug 14;3:17028. doi: 10.1038/micronano.2017.28. eCollection 2017.
9
Transistor in a tube: A route to three-dimensional bioelectronics.
Sci Adv. 2018 Oct 26;4(10):eaat4253. doi: 10.1126/sciadv.aat4253. eCollection 2018 Oct.
10
A general model of focal adhesion orientation dynamics in response to static and cyclic stretch.
Commun Biol. 2018 Jun 28;1:81. doi: 10.1038/s42003-018-0084-9. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验