Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, India.
J Colloid Interface Sci. 2012 Mar 15;370(1):144-54. doi: 10.1016/j.jcis.2011.12.074. Epub 2012 Jan 8.
In this paper, we report on the amino acids-/citric acid-/tartaric acid-assisted morphologically controlled hydrothermal synthesis of micro-/nanostructured crystalline copper oxides (CuO). These oxides were characterized by means of X-ray diffraction, nitrogen sorption, scanning electron microscopy, Fourier transform infrared, and UV-visible spectroscopy. The surface area of metal oxides depends on the amino acid used in the synthesis. The formation mechanisms were proposed based on the experimental results, which show that amino acid/citric acid/tartaric acid and hydrothermal time play an important role in tuning the morphology and structure of CuO. The catalytic activity of as-synthesized CuO was demonstrated by catalytic oxidation of methylene blue in the presence of hydrogen peroxide (H(2)O(2)). CuO synthesized using tyrosine was found to be the best catalyst compared to a variety of CuO synthesized in this study. CuO (synthesized in this study)-modified electrodes were used for the construction of non-enzymatic sensors, which displayed excellent electrocatalytic response for the detection of H(2)O(2) and glucose compared to conventional CuO. The high electrocatalytic response observed for the CuO synthesized using tyrosine can be correlated with the large surface area, which enhances the accessibility of H(2)O(2)/glucose molecule to the active site that results in high observed current. The methodology adopted in the present study provides a new platform for the fabrication of CuO-based high-performance glucose and other biosensors.
在本文中,我们报告了氨基酸-/柠檬酸-/酒石酸辅助的形貌控制水热合成微-/纳米结构结晶氧化铜(CuO)。这些氧化物通过 X 射线衍射、氮气吸附、扫描电子显微镜、傅里叶变换红外和紫外-可见光谱进行了表征。金属氧化物的比表面积取决于合成中使用的氨基酸。基于实验结果提出了形成机制,表明氨基酸/柠檬酸/酒石酸和水热时间在调节 CuO 的形貌和结构方面起着重要作用。在存在过氧化氢(H2O2)的情况下,通过催化氧化亚甲基蓝来证明所合成的 CuO 的催化活性。与本研究中合成的各种 CuO 相比,使用酪氨酸合成的 CuO 被发现是最佳催化剂。CuO(本研究中合成)修饰电极用于构建非酶传感器,与传统的 CuO 相比,该传感器对 H2O2 和葡萄糖的检测表现出优异的电催化响应。与传统的 CuO 相比,使用酪氨酸合成的 CuO 表现出高电催化响应,这可以与大的比表面积相关,这增强了 H2O2/葡萄糖分子到达活性位点的可及性,从而导致观察到的高电流。本研究采用的方法为基于 CuO 的高性能葡萄糖和其他生物传感器的制造提供了一个新平台。