Suppr超能文献

使用腹部气动驱动器和磁共振弹性成像(MRE)对模拟生物软组织的超粘弹性模型进行特性描述。

Characterization of a hyper-viscoelastic phantom mimicking biological soft tissue using an abdominal pneumatic driver with magnetic resonance elastography (MRE).

机构信息

Université de Technologie de Compiègne, UMR CNRS 7338, BioMécanique et BioIngénierie, France.

出版信息

J Biomech. 2012 Apr 5;45(6):952-7. doi: 10.1016/j.jbiomech.2012.01.017. Epub 2012 Jan 28.

Abstract

The purpose of this study was to create a polymer phantom mimicking the mechanical properties of soft tissues using experimental tests and rheological models. Multifrequency Magnetic Resonance Elastography (MMRE) tests were performed on the present phantom with a pneumatic driver to characterize the viscoelastic (μ, η) properties using Voigt, Maxwell, Zener and Springpot models. To optimize the MMRE protocol, the driver behavior was analyzed with a vibrometer. Moreover, the hyperelastic properties of the phantom were determined using compressive tests and Mooney-Rivlin model. The range of frequency to be used with the round driver was found between 60 Hz and 100 Hz as it exhibits one type of vibration mode for the membrane. MRE analysis revealed an increase in the shear modulus with frequency reflecting the viscoelastic properties of the phantom showing similar characteristic of soft tissues. Rheological results demonstrated that Springpot model better revealed the viscoelastic properties (μ=3.45 kPa, η=6.17 Pas) of the phantom and the Mooney-Rivlin coefficients were C(10)=1.09.10(-2) MPa and C(01)=-8.96.10(-3) MPa corresponding to μ=3.95 kPa. These studies suggest that the phantom, mimicking soft tissue, could be used for preliminary MRE tests to identify the optimal parameters necessary for in vivo investigations. Further developments of the phantom may allow clinicians to more accurately mimic healthy and pathological soft tissues using MRE.

摘要

本研究旨在通过实验测试和流变模型创建一种模仿软组织力学特性的聚合物模型。使用气动驱动器对现有模型进行多频磁共振弹性成像 (MMRE) 测试,使用 Voigt、Maxwell、Zener 和 Springpot 模型来表征粘弹性 (μ, η) 特性。为了优化 MMRE 协议,使用测振仪分析了驱动器的行为。此外,还使用压缩测试和 Mooney-Rivlin 模型确定了模型的超弹性特性。由于膜只有一种振动模式,因此发现使用圆形驱动器的频率范围在 60 Hz 和 100 Hz 之间。MRE 分析表明,剪切模量随频率的增加而增加,反映了模型的粘弹性特性,表现出与软组织相似的特征。流变学结果表明,Springpot 模型更好地揭示了模型的粘弹性特性(μ=3.45 kPa,η=6.17 Pa·s),Mooney-Rivlin 系数为 C(10)=1.09.10(-2) MPa 和 C(01)=-8.96.10(-3) MPa,对应的剪切模量为 3.95 kPa。这些研究表明,该模型可模仿软组织,用于初步的 MRE 测试,以确定体内研究所需的最佳参数。模型的进一步发展可能使临床医生能够使用 MRE 更准确地模拟健康和病理软组织。

相似文献

3
Measuring viscoelastic parameters in Magnetic Resonance Elastography: a comparison at high and low magnetic field intensity.
J Mech Behav Biomed Mater. 2021 Aug;120:104587. doi: 10.1016/j.jmbbm.2021.104587. Epub 2021 May 20.
4
Viscoelastic shear properties of in vivo thigh muscles measured by MR elastography.
J Magn Reson Imaging. 2016 Jun;43(6):1423-33. doi: 10.1002/jmri.25105. Epub 2015 Nov 25.
6
Viscoelastic properties of soft gels: comparison of magnetic resonance elastography and dynamic shear testing in the shear wave regime.
Phys Med Biol. 2011 Oct 7;56(19):6379-400. doi: 10.1088/0031-9155/56/19/014. Epub 2011 Sep 9.
7
8
Tabletop MR elastography for investigating effects of the freeze-thaw cycle on the mechanical properties of biological tissues.
J Mech Behav Biomed Mater. 2022 Nov;135:105458. doi: 10.1016/j.jmbbm.2022.105458. Epub 2022 Sep 13.
9
Liquid-Liver Phantom: Mimicking the Viscoelastic Dispersion of Human Liver for Ultrasound- and MRI-Based Elastography.
Invest Radiol. 2022 Aug 1;57(8):502-509. doi: 10.1097/RLI.0000000000000862. Epub 2022 Feb 23.
10
Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
J Mech Behav Biomed Mater. 2014 Jul;35:132-43. doi: 10.1016/j.jmbbm.2014.03.017. Epub 2014 Apr 1.

引用本文的文献

1
Magnetic Resonance Elastography of Upper Trapezius Muscle.
NMR Biomed. 2025 Apr;38(4):e70007. doi: 10.1002/nbm.70007.
3
Ex-vivo quantification of ovine pia arachnoid complex biomechanical properties under uniaxial tension.
Fluids Barriers CNS. 2020 Nov 12;17(1):68. doi: 10.1186/s12987-020-00229-w.
4
Reliable preparation of agarose phantoms for use in quantitative magnetic resonance elastography.
J Mech Behav Biomed Mater. 2019 Sep;97:65-73. doi: 10.1016/j.jmbbm.2019.05.001. Epub 2019 May 3.
5
Phantom evaluations of nonlinear inversion MR elastography.
Phys Med Biol. 2018 Jul 19;63(14):145021. doi: 10.1088/1361-6560/aacb08.
6
Parameter identification in a generalized time-harmonic Rayleigh damping model for elastography.
PLoS One. 2014 Apr 1;9(4):e93080. doi: 10.1371/journal.pone.0093080. eCollection 2014.

本文引用的文献

1
Viscoelasticity-based MR elastography of skeletal muscle.
Phys Med Biol. 2010 Nov 7;55(21):6445-59. doi: 10.1088/0031-9155/55/21/007. Epub 2010 Oct 15.
2
Multiplicative Jacobian Energy Decomposition method for fast porous visco-hyperelastic soft tissue model.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):235-42. doi: 10.1007/978-3-642-15705-9_29.
3
Viscoelasticity-based staging of hepatic fibrosis with multifrequency MR elastography.
Radiology. 2010 Oct;257(1):80-6. doi: 10.1148/radiol.10092489. Epub 2010 Aug 2.
4
Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging.
Ultrasound Med Biol. 2010 May;36(5):789-801. doi: 10.1016/j.ultrasmedbio.2010.02.013.
7
Evaluation of a rapid, multiphase MRE sequence in a heart-simulating phantom.
Magn Reson Med. 2009 Sep;62(3):691-8. doi: 10.1002/mrm.22048.
8
Copolymer-in-oil phantom materials for elastography.
Ultrasound Med Biol. 2009 Jul;35(7):1185-97. doi: 10.1016/j.ultrasmedbio.2009.01.012. Epub 2009 May 7.
9
Magnetic resonance elastography with a phased-array acoustic driver system.
Magn Reson Med. 2009 Mar;61(3):678-85. doi: 10.1002/mrm.21885.
10
Quantitative viscoelasticity mapping of human liver using supersonic shear imaging: preliminary in vivo feasibility study.
Ultrasound Med Biol. 2009 Feb;35(2):219-29. doi: 10.1016/j.ultrasmedbio.2008.08.018. Epub 2008 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验