ICREA & Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Esfera UAB, E-08193, Bellaterra, Spain.
Nanoscale. 2012 Mar 7;4(5):1620-6. doi: 10.1039/c2nr11693f. Epub 2012 Jan 30.
For good performance of photonic devices whose working principle is based on the enhancement of electromagnetic fields obtained by confining light into dielectric resonators with dimensions in the nanometre length scale, a detailed knowledge of the optical mode structure becomes essential. However, this information is usually lacking and can only be indirectly obtained by conventional spectroscopic techniques. Here we unraveled the influence of wire size, incident wavelength, degree of polarization and the presence of a substrate on the optical near fields generated by cavity modes of individual hexagonal ZnO nanowires by combining scanning near-field optical microscopy (SNOM) with electrodynamics calculations within the discrete dipole approximation (DDA). The near-field patterns obtained with very high spatial resolution, better than 50 nm, exhibit striking size and spatial-dispersion effects, which are well accounted for within DDA, using a wavevector-dependent dipolar interaction and considering the dielectric anisotropy of ZnO. Our results show that both SNOM and DDA simulations are powerful tools for the design of optoelectronic devices able to manipulate light at the nanoscale.
为了使基于将光限制在纳米级介电谐振器中以增强电磁场的光子器件具有良好的性能,详细了解光学模式结构变得至关重要。然而,通常缺乏这种信息,只能通过传统的光谱技术间接获得。在这里,我们通过将扫描近场光学显微镜(SNOM)与离散偶极子近似(DDA)内的电动力学计算相结合,揭示了线尺寸、入射波长、偏振度和衬底对单个六方 ZnO 纳米线腔模产生的光学近场的影响。通过非常高的空间分辨率(优于 50nm)获得的近场图案显示出明显的尺寸和空间分散效应,这些效应在 DDA 中得到了很好的解释,使用了依赖波矢的偶极子相互作用,并考虑了 ZnO 的介电各向异性。我们的结果表明,SNOM 和 DDA 模拟都是设计能够在纳米尺度上操纵光的光电设备的有力工具。