Suppr超能文献

α-防御素盐桥诱导骨架稳定,从而促进折叠并赋予抗蛋白酶水解的能力。

The α-defensin salt-bridge induces backbone stability to facilitate folding and confer proteolytic resistance.

机构信息

School of Natural Sciences, Linnaeus University, 39182 Kalmar, Sweden.

出版信息

Amino Acids. 2012 Oct;43(4):1471-83. doi: 10.1007/s00726-012-1220-3.

Abstract

Salt-bridge interactions between acidic and basic amino acids contribute to the structural stability of proteins and to protein-protein interactions. A conserved salt-bridge is a canonical feature of the α-defensin antimicrobial peptide family, but the role of this common structural element has not been fully elucidated. We have investigated mouse Paneth cell α-defensincryptdin-4 (Crp4) and peptide variants with mutations at Arg7 or Glu15 residue positions to disrupt the salt-bridge and assess the consequences on Crp4 structure, function, and stability. NMR analyses showed that both (R7G)-Crp4 and (E15G)-Crp4 adopt native-like structures, evidence of fold plasticity that allows peptides to reshuffle side chains and stabilize the structure in the absence of the salt-bridge. In contrast, introduction of a large hydrophobic side chain at position 15, as in (E15L)-Crp4 cannot be accommodated in the context of the Crp4 primary structure. Regardless of which side of the salt-bridge was mutated, salt-bridge variants retained bactericidal peptide activity with differential microbicidal effects against certain bacterial cell targets, confirming that the salt-bridge does not determine bactericidal activity per se. The increased structural flexibility induced by salt-bridge disruption enhanced peptide sensitivity to proteolysis. Although sensitivity to proteolysis by MMP7 was unaffected by most Arg(7) and Glu(150 substitutions, every salt-bridge variant was degraded extensively by trypsin. Moreover, the salt-bridge facilitates adoption of the characteristic α-defensin fold as shown by the impaired in vitro refolding of (E15D)-proCrp4, the most conservative salt-bridge disrupting replacement. In Crp4, therefore, the canonical α-defensin salt-bridge facilitates adoption of the characteristic α-defensin fold, which decreases structural flexibility and confers resistance todegradation by proteinases.

摘要

盐桥相互作用在酸性和碱性氨基酸之间有助于蛋白质的结构稳定性和蛋白质-蛋白质相互作用。保守的盐桥是α-防御素抗菌肽家族的典型特征,但这个常见结构元件的作用尚未完全阐明。我们研究了小鼠潘氏细胞α-防御素cryptdin-4(Crp4)和在Arg7 或Glu15 残基位置发生突变以破坏盐桥的肽变体,并评估其对 Crp4 结构、功能和稳定性的影响。NMR 分析表明,(R7G)-Crp4 和(E15G)-Crp4 都采用类似天然的结构,这表明折叠可塑性允许肽重新排列侧链并在没有盐桥的情况下稳定结构。相比之下,在(E15L)-Crp4 中引入位置 15 的大疏水性侧链在 Crp4 一级结构的背景下是无法容纳的。无论盐桥的哪一侧发生突变,盐桥变体都保留了杀菌肽活性,对某些细菌细胞靶标具有不同的杀菌效果,证实盐桥本身并不能决定杀菌活性。盐桥破坏引起的结构灵活性增加增强了肽对蛋白水解的敏感性。尽管盐桥突变对 MMP7 的敏感性没有受到大多数 Arg(7)和 Glu(150)取代的影响,但每种盐桥变体都被胰蛋白酶广泛降解。此外,盐桥有助于采用特征性的α-防御素折叠,如(E15D)-proCrp4 的体外折叠受损所示,这是最保守的盐桥破坏取代。因此,在 Crp4 中,典型的α-防御素盐桥有助于采用特征性的α-防御素折叠,这降低了结构灵活性并赋予了对蛋白酶降解的抗性。

相似文献

3
Functional analysis of the alpha-defensin disulfide array in mouse cryptdin-4.
J Biol Chem. 2004 Oct 15;279(42):44188-96. doi: 10.1074/jbc.M406154200. Epub 2004 Aug 5.
5
Anionic amino acids near the pro-alpha-defensin N terminus mediate inhibition of bactericidal activity in mouse pro-cryptdin-4.
J Biol Chem. 2009 Mar 13;284(11):6826-31. doi: 10.1074/jbc.M807024200. Epub 2008 Dec 23.
7
The conserved salt bridge in human alpha-defensin 5 is required for its precursor processing and proteolytic stability.
J Biol Chem. 2008 Aug 1;283(31):21509-18. doi: 10.1074/jbc.M801851200. Epub 2008 May 22.
8
Biosynthesis and antimicrobial evaluation of backbone-cyclized α-defensins.
Biochemistry. 2011 Dec 6;50(48):10508-19. doi: 10.1021/bi201430f. Epub 2011 Nov 9.
10
Why is the Arg5-Glu13 salt bridge conserved in mammalian alpha-defensins?
J Biol Chem. 2005 Dec 30;280(52):43039-47. doi: 10.1074/jbc.M510562200. Epub 2005 Oct 24.

引用本文的文献

1
Antimicrobial peptides: structure, functions and translational applications.
Nat Rev Microbiol. 2025 Jul 11. doi: 10.1038/s41579-025-01200-y.
2
Deciphering the folding code of collagens.
Nat Commun. 2025 Mar 19;16(1):2702. doi: 10.1038/s41467-024-54046-y.
3
Antimicrobial Peptide Synergies for Fighting Infectious Diseases.
Adv Sci (Weinh). 2023 Sep;10(26):e2300472. doi: 10.1002/advs.202300472. Epub 2023 Jul 5.
5
Mouse α-Defensins: Structural and Functional Analysis of the 17 Cryptdin Isoforms Identified from a Single Jejunal Crypt.
Infect Immun. 2023 Jan 24;91(1):e0036122. doi: 10.1128/iai.00361-22. Epub 2022 Dec 6.
7
Targeting and inactivation of bacterial toxins by human defensins.
Biol Chem. 2017 Sep 26;398(10):1069-1085. doi: 10.1515/hsz-2017-0106.
8
Human Neuronal Calcium Sensor-1 Protein Avoids Histidine Residues To Decrease pH Sensitivity.
J Phys Chem B. 2017 Jan 26;121(3):508-517. doi: 10.1021/acs.jpcb.6b11094. Epub 2017 Jan 17.
9
The Unusual Resistance of Avian Defensin AvBD7 to Proteolytic Enzymes Preserves Its Antibacterial Activity.
PLoS One. 2016 Aug 25;11(8):e0161573. doi: 10.1371/journal.pone.0161573. eCollection 2016.
10
Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics.
Biophys J. 2016 Jun 7;110(11):2328-2341. doi: 10.1016/j.bpj.2016.04.015.

本文引用的文献

1
Antibiotic activities of host defense peptides: more to it than lipid bilayer perturbation.
Nat Prod Rep. 2011 Aug;28(8):1350-8. doi: 10.1039/c1np00022e. Epub 2011 May 27.
2
Optimal salt bridge for Trp-cage stabilization.
Biochemistry. 2011 Feb 22;50(7):1143-52. doi: 10.1021/bi101555y. Epub 2011 Feb 1.
3
"ER stress(ed out)!": Paneth cells and ischemia-reperfusion injury of the small intestine.
Gastroenterology. 2011 Feb;140(2):393-6. doi: 10.1053/j.gastro.2010.12.015. Epub 2010 Dec 18.
4
The engineering of an orally active conotoxin for the treatment of neuropathic pain.
Angew Chem Int Ed Engl. 2010 Sep 3;49(37):6545-8. doi: 10.1002/anie.201000620.
5
ER stress and the unfolded protein response in intestinal inflammation.
Am J Physiol Gastrointest Liver Physiol. 2010 Jun;298(6):G820-32. doi: 10.1152/ajpgi.00063.2010. Epub 2010 Mar 25.
7
Endoplasmic reticulum stress and intestinal inflammation.
Mucosal Immunol. 2010 Jan;3(1):11-6. doi: 10.1038/mi.2009.122. Epub 2009 Oct 28.
9
Anionic amino acids near the pro-alpha-defensin N terminus mediate inhibition of bactericidal activity in mouse pro-cryptdin-4.
J Biol Chem. 2009 Mar 13;284(11):6826-31. doi: 10.1074/jbc.M807024200. Epub 2008 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验