Suppr超能文献

最佳盐桥稳定 Trp-cage。

Optimal salt bridge for Trp-cage stabilization.

机构信息

Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.

出版信息

Biochemistry. 2011 Feb 22;50(7):1143-52. doi: 10.1021/bi101555y. Epub 2011 Feb 1.

Abstract

Gai and co-workers [Bunagan, M. R., et al. (2006) J. Phys. Chem. B 110, 3759-3763] reported computational design studies suggesting that a D9E mutation would stabilize the Trp-cage. Experimental studies for this mutation were reported in 2008 [Hudaky, P., et al. (2008) Biochemistry 47, 1007-1016]; the authors suggested that [D9E]-TC5b presented a more compact and melting resistant structure because of the "optimal distance between the two sides of the molecule". Nonetheless, the authors reported essentially the same circular dichroism (CD) melting temperature, 38 ± 0.3 °C, for TC5b and its [D9E] mutant. In this study, a more stable Trp-cage, DAYAQ WLKDG GPSSG RPPPS, was examined by nuclear magnetic resonance and CD with the following mutations: [D9E], [D9R,R16E], [R16O], [D9E,R16O], [R16K], and [D9E,R16K]. Of these, the [D9E] mutant displayed the smallest acidification-induced change in the apparent T(m). In analogy to the prior study, the CD melts of TC10b and its [D9E] mutant were, however, very similar; all of the other mutations were significantly fold destabilizing by all measures. A detailed analysis indicates that the original D9-R16 salt bridge is optimal with regard to fold cooperativity and fold stabilization. Evidence of salt bridge formation is also provided for a swapped pair, the [D9R,R16E] mutant. Model systems reveal that an ionized aspartate at the C-terminus of a helix significantly decreases intrinsic helicity, a requirement for Trp-cage fold stability. The CD evidence that was cited as supporting increased fold stability for [D9E]-TC5b at higher temperatures appears to be a reflection of increased helix stability in both the folded and unfolded states rather than a more favorable salt bridge. Our study also provides evidence of other Trp-cage stabilizing roles of the R16 side chain.

摘要

该文报道了一项计算机设计研究,指出 D9E 突变可以稳定色氨酰-缬氨酰五肽(Trp-cage)。2008 年,有实验研究报道了该突变[Hudaky, P., et al. (2008) Biochemistry 47, 1007-1016];作者认为,由于“分子两侧之间的最佳距离”,[D9E]-TC5b 呈现出更紧凑和抗熔解的结构。然而,作者报告的 TC5b 及其 [D9E] 突变体的圆二色性(CD)熔点基本相同,为 38 ± 0.3°C。在这项研究中,通过核磁共振和 CD 研究了一种更稳定的色氨酰-缬氨酰五肽,即 DAYAQ WLKDG GPSSG RPPPS,其突变如下:[D9E]、[D9R,R16E]、[R16O]、[D9E,R16O]、[R16K]和[D9E,R16K]。其中,[D9E] 突变体的表观 Tm 受酸化诱导的变化最小。与之前的研究类似,TC10b 及其 [D9E] 突变体的 CD 熔解也非常相似;所有其他突变体在所有测量中都显著降低了折叠稳定性。详细分析表明,原始 D9-R16 盐桥在折叠协同性和折叠稳定性方面是最佳的。盐桥形成的证据也为一个交换对,即 [D9R,R16E] 突变体提供了证据。模型系统表明,螺旋末端的离子化天冬氨酸显著降低了色氨酰-缬氨酰五肽的固有螺旋性,这是色氨酰-缬氨酰五肽折叠稳定性的要求。被引用为支持 [D9E]-TC5b 在较高温度下折叠稳定性增加的 CD 证据似乎反映了折叠和未折叠状态下的螺旋稳定性增加,而不是更有利的盐桥。我们的研究还提供了色氨酰-缬氨酰五肽中 R16 侧链的其他稳定作用的证据。

相似文献

1
Optimal salt bridge for Trp-cage stabilization.
Biochemistry. 2011 Feb 22;50(7):1143-52. doi: 10.1021/bi101555y. Epub 2011 Feb 1.
2
Cooperativity network of Trp-cage miniproteins: probing salt-bridges.
J Pept Sci. 2011 Sep;17(9):610-9. doi: 10.1002/psc.1377. Epub 2011 Jun 6.
3
The Trp-cage: optimizing the stability of a globular miniprotein.
Protein Eng Des Sel. 2008 Mar;21(3):171-85. doi: 10.1093/protein/gzm082. Epub 2008 Jan 18.
4
Cooperation between a salt bridge and the hydrophobic core triggers fold stabilization in a Trp-cage miniprotein.
Biochemistry. 2008 Jan 22;47(3):1007-16. doi: 10.1021/bi701371x. Epub 2007 Dec 28.
5
Reversing the typical pH stability profile of the Trp-cage.
Biopolymers. 2019 Mar;110(3):e23260. doi: 10.1002/bip.23260. Epub 2019 Feb 19.
7
Folding and unfolding thermodynamics of the TC10b Trp-cage miniprotein.
Phys Chem Chem Phys. 2014 Feb 21;16(7):2748-57. doi: 10.1039/c3cp54339k. Epub 2014 Jan 3.
8
Designing a 20-residue protein.
Nat Struct Biol. 2002 Jun;9(6):425-30. doi: 10.1038/nsb798.

引用本文的文献

1
Influence of Trp-Cage on the Function and Stability of GLP-1R Agonist Exenatide Derivatives.
J Med Chem. 2024 Sep 26;67(18):16757-16772. doi: 10.1021/acs.jmedchem.4c01553. Epub 2024 Sep 10.
2
Formaldehyde Analysis in Non-Aqueous Methanol Solutions by Infrared Spectroscopy and Electrospray Ionization.
Front Chem. 2021 Jul 2;9:678112. doi: 10.3389/fchem.2021.678112. eCollection 2021.
3
Human Neuronal Calcium Sensor-1 Protein Avoids Histidine Residues To Decrease pH Sensitivity.
J Phys Chem B. 2017 Jan 26;121(3):508-517. doi: 10.1021/acs.jpcb.6b11094. Epub 2017 Jan 17.
4
Temperature-Dependent Conformational Properties of Human Neuronal Calcium Sensor-1 Protein Revealed by All-Atom Simulations.
J Phys Chem B. 2016 Apr 14;120(14):3551-9. doi: 10.1021/acs.jpcb.5b12299. Epub 2016 Mar 31.
5
Effects of the C-Terminal Tail on the Conformational Dynamics of Human Neuronal Calcium Sensor-1 Protein.
J Phys Chem B. 2015 Nov 5;119(44):14236-44. doi: 10.1021/acs.jpcb.5b07962. Epub 2015 Oct 16.
6
Disulfide-Mediated β-Strand Dimers: Hyperstable β-Sheets Lacking Tertiary Interactions and Turns.
J Am Chem Soc. 2015 Apr 29;137(16):5363-71. doi: 10.1021/ja5117809. Epub 2015 Apr 16.
7
Folding dynamics and pathways of the trp-cage miniproteins.
Biochemistry. 2014 Sep 30;53(38):6011-21. doi: 10.1021/bi501021r. Epub 2014 Sep 16.
8
Role of tryptophan side chain dynamics on the Trp-cage mini-protein folding studied by molecular dynamics simulations.
PLoS One. 2014 Feb 7;9(2):e88383. doi: 10.1371/journal.pone.0088383. eCollection 2014.
10
Circular permutation of a WW domain: folding still occurs after excising the turn of the folding-nucleating hairpin.
J Am Chem Soc. 2014 Jan 15;136(2):741-9. doi: 10.1021/ja410824x. Epub 2014 Jan 3.

本文引用的文献

2
Thermodynamics of the Trp-cage miniprotein unfolding in urea.
Proteins. 2010 May 1;78(6):1376-81. doi: 10.1002/prot.22681.
3
A kinetic model of trp-cage folding from multiple biased molecular dynamics simulations.
PLoS Comput Biol. 2009 Aug;5(8):e1000452. doi: 10.1371/journal.pcbi.1000452. Epub 2009 Aug 7.
6
Hyperstable miniproteins: additive effects of D- and L-Ala mutations.
Org Biomol Chem. 2008 Dec 7;6(23):4287-9. doi: 10.1039/b814314e. Epub 2008 Oct 15.
7
Lysine and arginine residues do not increase the helicity of alanine-rich peptide helices.
Chem Commun (Camb). 2008 Oct 21(39):4765-7. doi: 10.1039/b807101b. Epub 2008 Aug 8.
8
Ab initio folding simulation of Trpcage by replica exchange with hybrid Hamiltonian.
Biophys Chem. 2008 Oct;137(2-3):116-25. doi: 10.1016/j.bpc.2008.08.002. Epub 2008 Aug 13.
9
Rate constant and reaction coordinate of Trp-cage folding in explicit water.
Biophys J. 2008 Nov 1;95(9):4246-57. doi: 10.1529/biophysj.108.136267. Epub 2008 Aug 1.
10
Solvent interactions with the Trp-cage peptide in 35% ethanol-water.
Biopolymers. 2008 Oct;89(10):862-72. doi: 10.1002/bip.21028.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验