Joint BioEnergy Institute, Emeryville, California, USA.
Appl Environ Microbiol. 2012 Apr;78(7):2221-9. doi: 10.1128/AEM.06761-11. Epub 2012 Jan 27.
Escherichia coli has the potential to be a powerful biocatalyst for the conversion of lignocellulosic biomass into useful materials such as biofuels and polymers. One important challenge in using E. coli for the transformation of biomass sugars is diauxie, or sequential utilization of different types of sugars. We demonstrate that, by increasing the intracellular levels of the transcription factor XylR, the preferential consumption of arabinose before xylose can be eliminated. In addition, XylR augmentation must be finely tuned for robust coutilization of these two hemicellulosic sugars. Using a novel technique for scarless gene insertion, an additional copy of xylR was inserted into the araBAD operon. The resulting strain was superior at cometabolizing mixtures of arabinose and xylose and was able to produce at least 36% more ethanol than wild-type strains. This strain is a useful starting point for the development of an E. coli biocatalyst that can simultaneously convert all biomass sugars.
大肠杆菌有可能成为一种强大的生物催化剂,可将木质纤维素生物质转化为有用的材料,如生物燃料和聚合物。在利用大肠杆菌将生物质糖转化为有用物质的过程中,一个重要的挑战是双重营养期现象,即顺序利用不同类型的糖。我们证明,通过增加转录因子 XylR 的细胞内水平,可以消除阿拉伯糖优先于木糖的消耗。此外,必须对 XylR 的增强进行精细调整,以实现这两种半纤维素糖的稳健共利用。我们使用一种无痕基因插入的新技术,将额外的 xylR 拷贝插入到 araBAD 操纵子中。结果表明,该菌株在共代谢阿拉伯糖和木糖混合物方面表现出色,比野生型菌株能够多生产至少 36%的乙醇。该菌株是开发能够同时转化所有生物质糖的大肠杆菌生物催化剂的一个有用起点。