Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA.
Curr Opin Chem Biol. 2013 Jun;17(3):462-71. doi: 10.1016/j.cbpa.2013.03.037. Epub 2013 Apr 23.
Next-generation biofuels must be compatible with current transportation infrastructure and be derived from environmentally sustainable resources that do not compete with food crops. Many bacterial species have unique properties advantageous to the production of such next-generation fuels. However, no single species possesses all characteristics necessary to make high quantities of fuels from plant waste or CO2. Species containing a subset of the desired characteristics are used as starting points for engineering organisms with all desired attributes. Metabolic engineering of model organisms has yielded high titer production of advanced fuels, including alcohols, isoprenoids, and fatty acid derivatives. Technical developments now allow engineering of native fuel producers, as well as lignocellulolytic and autotrophic bacteria, for the production of biofuels. Continued research on multiple fronts is required to engineer organisms for truly sustainable and economical biofuel production.
下一代生物燃料必须与当前的交通基础设施兼容,并且必须源自环境可持续的资源,这些资源不应与粮食作物竞争。许多细菌物种具有独特的特性,有利于生产此类下一代燃料。然而,没有单一的物种具有从植物废物或 CO2 中大量生产燃料所需的所有特征。具有所需特征子集的物种被用作起点,用于构建具有所有所需属性的工程生物。对模式生物进行代谢工程,可大量生产高级燃料,包括醇类、类异戊二烯和脂肪酸衍生物。技术的发展现在允许对天然燃料生产者以及木质纤维素分解菌和自养细菌进行工程改造,以生产生物燃料。需要在多个方面继续研究,以对生物体进行工程改造,从而实现真正可持续和经济的生物燃料生产。