Biomedical Signal and Image Computing Lab, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
IEEE Trans Med Imaging. 2012 May;31(5):1113-23. doi: 10.1109/TMI.2012.2185943. Epub 2012 Jan 27.
Noise confounds present serious complications to functional magnetic resonance imaging (fMRI) analysis. The amount of discernible signals within a single dataset of a subject is often inadequate to obtain satisfactory intra-subject activation detection. To remedy this limitation, we propose a novel group Markov random field (GMRF) that extends each subject's neighborhood system to other subjects to enable information coalescing. A distinct advantage of GMRF over standard fMRI group analysis is that no stringent one-to-one voxel correspondence is required. Instead, intra- and inter-subject neighboring voxels are jointly regularized to encourage spatially proximal voxels to be assigned similar labels across subjects. Our proposed group-extended graph structure thus provides an effective means for handling inter-subject variability. Also, adopting a group-wise approach by integrating group information into intra-subject activation, as opposed to estimating a single average group map, permits inter-subject differences to be characterized and studied. GMRF can be elegantly implemented as a single MRF, thus enabling all subjects' activation maps to be simultaneously and collaboratively segmented with global optimality guaranteed in the case of binary labeling. We validate our technique on synthetic and real fMRI data and demonstrate GMRF's superior performance over standard fMRI analysis.
噪声给功能磁共振成像(fMRI)分析带来了严重的并发症。在单个被试的数据集内,可识别信号的数量往往不足以获得令人满意的激活检测。为了弥补这一局限性,我们提出了一种新颖的组马尔可夫随机场(GMRF),将每个被试的邻域系统扩展到其他被试,以实现信息融合。与标准的 fMRI 组分析相比,GMRF 的一个显著优势是不需要严格的一对一体素对应关系。相反,通过联合正则化,对被试内和被试间的相邻体素进行约束,鼓励在不同被试之间将空间上接近的体素分配为相似的标签。因此,我们提出的组扩展图结构为处理被试间变异性提供了一种有效的手段。此外,通过将组信息集成到被试内激活中,采用组间方法,而不是估计单个平均组图,允许对被试间差异进行特征化和研究。GMRF 可以作为单个 MRF 优雅地实现,从而可以同时和协作地对所有被试的激活图进行分割,在二进制标记的情况下保证全局最优。我们在合成和真实 fMRI 数据上验证了我们的技术,并证明了 GMRF 在性能上优于标准 fMRI 分析。