Ng Bernard, Hamarneh Ghassan, Abugharbieh Rafeef
Biomedical Signal and Image Computing Lab, The University of British Columbia.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):331-8. doi: 10.1007/978-3-642-15745-5_41.
Due to the complex noise structure of functional magnetic resonance imaging (fMRI) data, methods that rely on information within a single subject often results in unsatisfactory functional segmentation. We thus propose a new graph-theoretic method, "Group Random Walker" (GRW), that integrates group information in detecting single-subject activation. Specifically, we extend each subject's neighborhood system in such a way that enables the states of both intra- and inter-subject neighbors to be regularized without having to establish a one-to-one voxel correspondence as required in standard fMRI group analysis. Also, the GRW formulation provides an exact, unique closed-form solution for jointly estimating the probabilistic activation maps of all subjects with global optimality guaranteed. Validation is performed on synthetic and real data to demonstrate GRW's superior detection power over standard analysis methods.
由于功能磁共振成像(fMRI)数据的复杂噪声结构,依赖单个受试者内部信息的方法往往会导致功能分割效果不理想。因此,我们提出了一种新的基于图论的方法,即“群体随机游走”(GRW),该方法在检测单受试者激活时整合了群体信息。具体而言,我们以一种能够对受试者内部和受试者之间邻居的状态进行正则化的方式扩展每个受试者的邻域系统,而无需像标准fMRI群体分析那样建立一对一的体素对应关系。此外,GRW公式为联合估计所有受试者的概率激活图提供了一个精确、唯一的封闭形式解,并保证了全局最优性。我们在合成数据和真实数据上进行了验证,以证明GRW相对于标准分析方法具有更高的检测能力。