Suppr超能文献

使用群体随机游走法在功能磁共振成像中检测脑激活。

Detecting brain activation in fMRI using group random walker.

作者信息

Ng Bernard, Hamarneh Ghassan, Abugharbieh Rafeef

机构信息

Biomedical Signal and Image Computing Lab, The University of British Columbia.

出版信息

Med Image Comput Comput Assist Interv. 2010;13(Pt 2):331-8. doi: 10.1007/978-3-642-15745-5_41.

Abstract

Due to the complex noise structure of functional magnetic resonance imaging (fMRI) data, methods that rely on information within a single subject often results in unsatisfactory functional segmentation. We thus propose a new graph-theoretic method, "Group Random Walker" (GRW), that integrates group information in detecting single-subject activation. Specifically, we extend each subject's neighborhood system in such a way that enables the states of both intra- and inter-subject neighbors to be regularized without having to establish a one-to-one voxel correspondence as required in standard fMRI group analysis. Also, the GRW formulation provides an exact, unique closed-form solution for jointly estimating the probabilistic activation maps of all subjects with global optimality guaranteed. Validation is performed on synthetic and real data to demonstrate GRW's superior detection power over standard analysis methods.

摘要

由于功能磁共振成像(fMRI)数据的复杂噪声结构,依赖单个受试者内部信息的方法往往会导致功能分割效果不理想。因此,我们提出了一种新的基于图论的方法,即“群体随机游走”(GRW),该方法在检测单受试者激活时整合了群体信息。具体而言,我们以一种能够对受试者内部和受试者之间邻居的状态进行正则化的方式扩展每个受试者的邻域系统,而无需像标准fMRI群体分析那样建立一对一的体素对应关系。此外,GRW公式为联合估计所有受试者的概率激活图提供了一个精确、唯一的封闭形式解,并保证了全局最优性。我们在合成数据和真实数据上进行了验证,以证明GRW相对于标准分析方法具有更高的检测能力。

相似文献

1
Detecting brain activation in fMRI using group random walker.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):331-8. doi: 10.1007/978-3-642-15745-5_41.
2
Modeling brain activation in fMRI using group MRF.
IEEE Trans Med Imaging. 2012 May;31(5):1113-23. doi: 10.1109/TMI.2012.2185943. Epub 2012 Jan 27.
3
Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
Neuroimage. 2008 Oct 15;43(1):44-58. doi: 10.1016/j.neuroimage.2008.06.037. Epub 2008 Jul 11.
4
A combined SPM-ICA approach to fMRI.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:723-6. doi: 10.1109/IEMBS.2006.260420.
5
Structural analysis of fMRI data revisited: improving the sensitivity and reliability of fMRI group studies.
IEEE Trans Med Imaging. 2007 Sep;26(9):1256-69. doi: 10.1109/TMI.2007.903226.
6
A cluster overlap measure for comparison of activations in fMRI studies.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):1018-25. doi: 10.1007/978-3-642-04268-3_125.
7
Bayesian analysis of fMRI data with ICA based spatial prior.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):246-54. doi: 10.1007/978-3-540-85990-1_30.
8
Finding landmarks in the functional brain: detection and use for group characterization.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):476-83. doi: 10.1007/11566489_59.
9
Probabilistic framework for brain connectivity from functional MR images.
IEEE Trans Med Imaging. 2008 Jun;27(6):825-33. doi: 10.1109/TMI.2008.915672.
10
Functional segmentation of fMRI data using adaptive non-negative sparse PCA (ANSPCA).
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):490-7. doi: 10.1007/978-3-642-04271-3_60.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验