Suppr超能文献

从一种古细菌中 Na+/Ca2+ 交换器的特性描述与纯化。

Characterization and purification of a Na+/Ca2+ exchanger from an archaebacterium.

机构信息

Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1751, USA.

出版信息

J Biol Chem. 2012 Mar 9;287(11):8652-9. doi: 10.1074/jbc.M111.331280. Epub 2012 Jan 27.

Abstract

The superfamily of cation/Ca(2+) exchangers includes both Na(+)/Ca(2+) exchangers (NCXs) and Na(+)/Ca(2+),K(+) exchangers (NCKX) as the families characterized in most detail. These Ca(2+) transporters have prominent physiological roles. For example, NCX and NCKX are important in regulation of cardiac contractility and visual processes, respectively. The superfamily also has a large number of members of the YrbG family expressed in prokaryotes. However, no members of this family have been functionally expressed, and their transport properties are unknown. We have expressed, purified, and characterized a member of the YrbG family, MaX1 from Methanosarcina acetivorans. MaX1 catalyzes Ca(2+) uptake into membrane vesicles. The Ca(2+) uptake requires intravesicular Na(+) and is stimulated by an inside positive membrane potential. Despite very limited sequence similarity, MaX1 is a Na(+)/Ca(2+) exchanger with kinetic properties similar to those of NCX. The availability of a prokaryotic Na(+)/Ca(2+) exchanger should facilitate structural and mechanistic investigations.

摘要

阳离子/Ca(2+)交换器超家族包括 Na(+)/Ca(2+)交换器 (NCX) 和 Na(+)/Ca(2+),K(+)交换器 (NCKX),这两个家族是研究最详细的家族。这些 Ca(2+)转运蛋白具有重要的生理作用。例如,NCX 和 NCKX 在心脏收缩和视觉过程的调节中分别起着重要作用。该超家族还在原核生物中有大量 YrbG 家族成员。然而,该家族的成员尚未被功能表达,其转运特性尚不清楚。我们已经表达、纯化并表征了 Methanosarcina acetivorans 中的 YrbG 家族成员 MaX1。MaX1 催化 Ca(2+)进入膜囊泡的摄取。Ca(2+)摄取需要囊内 Na(+),并且受膜内正电势的刺激。尽管序列相似性非常有限,但 MaX1 是一种 Na(+)/Ca(2+)交换器,其动力学特性与 NCX 相似。原核 Na(+)/Ca(2+)交换器的可用性应有助于结构和机制的研究。

相似文献

1
Characterization and purification of a Na+/Ca2+ exchanger from an archaebacterium.
J Biol Chem. 2012 Mar 9;287(11):8652-9. doi: 10.1074/jbc.M111.331280. Epub 2012 Jan 27.
2
Structure-affinity insights into the Na and Ca interactions with multiple sites of a sodium-calcium exchanger.
FEBS J. 2020 Nov;287(21):4678-4695. doi: 10.1111/febs.15250. Epub 2020 Mar 2.
4
Dynamic distinctions in the Na/Ca exchanger adopting the inward- and outward-facing conformational states.
J Biol Chem. 2017 Jul 21;292(29):12311-12323. doi: 10.1074/jbc.M117.787168. Epub 2017 Jun 1.
6
The prokaryotic Na/Ca exchanger NCX_Mj transports Na and Ca in a 3:1 stoichiometry.
J Gen Physiol. 2018 Jan 2;150(1):51-65. doi: 10.1085/jgp.201711897. Epub 2017 Dec 13.
7
Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger.
Science. 2012 Feb 10;335(6069):686-90. doi: 10.1126/science.1215759.
8
Residues important for Ca ion transport in the neuronal K-dependent Na-Ca exchanger (NCKX2).
Cell Calcium. 2018 Sep;74:187-197. doi: 10.1016/j.ceca.2018.06.002. Epub 2018 Jun 30.
10
Structure-function relationships of K-dependent Na/Ca exchangers (NCKX).
Cell Calcium. 2020 Mar;86:102153. doi: 10.1016/j.ceca.2019.102153. Epub 2019 Dec 30.

引用本文的文献

1
Calcium signaling in postsynaptic mitochondria: mechanisms, dynamics, and role in ATP production.
Front Mol Neurosci. 2025 Jul 21;18:1621070. doi: 10.3389/fnmol.2025.1621070. eCollection 2025.
4
Insights into the early evolution of animal calcium signaling machinery: a unicellular point of view.
Cell Calcium. 2015 Mar;57(3):166-73. doi: 10.1016/j.ceca.2014.11.007. Epub 2014 Dec 2.
5
Sodium recognition by the Na+/Ca2+ exchanger in the outward-facing conformation.
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):E5354-62. doi: 10.1073/pnas.1415751111. Epub 2014 Dec 2.
6
Sodium-calcium exchangers (NCX): molecular hallmarks underlying the tissue-specific and systemic functions.
Pflugers Arch. 2014 Jan;466(1):43-60. doi: 10.1007/s00424-013-1405-y. Epub 2013 Nov 27.
7
Identification of the dimer interface of a bacterial Ca(2+)/H(+) antiporter.
Biochemistry. 2012 Dec 4;51(48):9603-11. doi: 10.1021/bi3012109. Epub 2012 Nov 16.

本文引用的文献

2
NCLX is an essential component of mitochondrial Na+/Ca2+ exchange.
Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):436-41. doi: 10.1073/pnas.0908099107. Epub 2009 Dec 15.
3
Structure and function of Na(+)-symporters with inverted repeats.
Curr Opin Struct Biol. 2009 Aug;19(4):425-32. doi: 10.1016/j.sbi.2009.06.002. Epub 2009 Jul 22.
4
Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport.
Biochem J. 2007 Sep 15;406(3):365-82. doi: 10.1042/BJ20070619.
5
K+ -dependent Na+/Ca2+ exchangers: key contributors to Ca2+ signaling.
Physiology (Bethesda). 2007 Jun;22:185-92. doi: 10.1152/physiol.00001.2007.
6
Ca2+ regulation in the Na+/Ca2+ exchanger involves two markedly different Ca2+ sensors.
Mol Cell. 2006 Apr 7;22(1):15-25. doi: 10.1016/j.molcel.2006.03.008.
7
Optimization of membrane protein overexpression and purification using GFP fusions.
Nat Methods. 2006 Apr;3(4):303-13. doi: 10.1038/nmeth0406-303.
8
Mutational analysis of the alpha-1 repeat of the cardiac Na(+)-Ca2+ exchanger.
J Biol Chem. 2005 Jan 14;280(2):1061-9. doi: 10.1074/jbc.M411899200. Epub 2004 Nov 1.
9
The cation/Ca(2+) exchanger superfamily: phylogenetic analysis and structural implications.
Mol Biol Evol. 2004 Sep;21(9):1692-703. doi: 10.1093/molbev/msh177. Epub 2004 May 26.
10
Inhibition and redistribution of NHE3, the apical Na+/H+ exchanger, by Clostridium difficile toxin B.
J Gen Physiol. 2004 May;123(5):491-504. doi: 10.1085/jgp.200308979. Epub 2004 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验