Department of Life Science and Applied Chemistry and OptoBioTechnology Research Center, Nagoya Institute of Technology, Japan.
Department of Physiology and Pharmacology, Tel-Aviv University, Israel.
FEBS J. 2020 Nov;287(21):4678-4695. doi: 10.1111/febs.15250. Epub 2020 Mar 2.
Selective recognition and transport of Na and Ca ions by sodium-calcium exchanger (NCX) proteins is a primary prerequisite for Ca signaling and homeostasis. Twelve ion-coordinating residues are highly conserved among NCXs, and distinct NCX orthologs contain two or three carboxylates, while sharing a common ion-exchange stoichiometry (3Na :1Ca ). How these structural differences affect the ion-binding affinity, selectivity, and transport rates remains unclear. Here, the mutational effects of three carboxylates (E54, E213, and D240) were analyzed on the ion-exchange rates in the archaeal NCX from Methanococcus jannaschii and ion-induced structure-affinity changes were monitored by attenuated total reflection-Fourier-transform infrared spectroscopy (ATR-FTIR). The D240N mutation elevated the ion-transport rates by twofold to threefold, meaning that the deprotonation of D240 is not essential for transport catalysis. In contrast, mutating E54 or E213 to A, D, N, or Q dramatically decreased the ion-transport rates. ATR-FTIR revealed high- and low-affinity binding of Na or Ca with E54 and E213, but not with D240. These findings reveal distinct structure-affinity states at specific ion-binding sites in the inward-facing (IF) and outward-facing orientation. Collectively, two multidentate carboxylate counterparts (E54 and E213) play a critical role in determining the ion coordination/transport in prokaryotic and eukaryotic NCXs, whereas the ortholog substitutions in prokaryotes (aspartate) and eukaryotes (asparagine) at the 240 position affect the ion-transport rates differently (k ), probably due to the structural differences in the transition state.
钠钙交换蛋白(NCX)对钠离子和钙离子的选择性识别和转运是钙信号转导和钙稳态的主要前提。NCX 高度保守的 12 个离子配位残基,不同的 NCX 同源物包含两个或三个羧酸盐,同时具有共同的离子交换化学计量比(3Na:1Ca)。这些结构差异如何影响离子结合亲和力、选择性和转运速率仍不清楚。在这里,分析了古细菌 Methanococcus jannaschii 的 NCX 中的三个羧酸盐(E54、E213 和 D240)的突变对离子交换速率的影响,并通过衰减全反射傅里叶变换红外光谱(ATR-FTIR)监测离子诱导的结构-亲和力变化。D240N 突变将离子转运速率提高了两倍至三倍,这意味着 D240 的去质子化对于转运催化不是必需的。相比之下,将 E54 或 E213 突变为 A、D、N 或 Q 会显著降低离子转运速率。ATR-FTIR 显示 E54 和 E213 具有高亲和性和低亲和性结合 Na 或 Ca,但 D240 没有。这些发现揭示了内向(IF)和外向(OF)构象中特定离子结合位点的不同结构-亲和力状态。总的来说,两个多齿羧酸盐对应物(E54 和 E213)在确定原核和真核 NCX 中的离子配位/转运中起着关键作用,而在 240 位的原核(天冬氨酸)和真核(天冬酰胺)的同源物取代会以不同的方式影响离子转运速率(k),可能是由于过渡态的结构差异所致。