Suppr超能文献

通过原子模拟技术,实现对 GroEL 分子伴侣蛋白别构通讯途径的详细描述。

Toward a detailed description of the pathways of allosteric communication in the GroEL chaperonin through atomistic simulation.

机构信息

School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.

出版信息

Biochemistry. 2012 Feb 28;51(8):1707-18. doi: 10.1021/bi201237a. Epub 2012 Feb 10.

Abstract

GroEL, along with its coprotein GroES, is essential for ensuring the correct folding of unfolded or newly synthesized proteins in bacteria. GroEL is a complex, allosteric molecule, composed of two heptameric rings stacked back to back, that undergoes large structural changes during its reaction cycle. These structural changes are driven by the cooperative binding and subsequent hydrolysis of ATP, by GroEL. Despite numerous previous studies, the precise mechanisms of allosteric communication and the associated structural changes remain elusive. In this paper, we describe a series of all-atom, unbiased, molecular dynamics simulations over relatively long (50-100 ns) time scales of a single, isolated GroEL subunit and also a heptameric GroEL ring, in the presence and absence of ATP. Combined with results from a distance restraint-biased simulation of the single ring, the atomistic details of the earliest stages of ATP-driven structural changes within this complex molecule are illuminated. Our results are in broad agreement with previous modeling studies of isolated subunits and with a coarse-grained, forcing simulation of the single ring. These are the first reported all-atom simulations of the GroEL single-ring complex and provide a unique insight into the role of charged residues K80, K277, R284, R285, and E388 at the subunit interface in transmission of the allosteric signal. These simulations also demonstrate the feasibility of performing all-atom simulations of very large systems on sufficiently long time scales on typical high performance computing facilities to show the origins of the earliest events in biologically relevant processes.

摘要

GroEL 与其共伴侣蛋白 GroES 一起,对于确保细菌中未折叠或新合成蛋白质的正确折叠是必不可少的。GroEL 是一种复杂的变构分子,由两个背对背堆叠的七聚体环组成,在其反应循环中经历了很大的结构变化。这些结构变化是由 GroEL 协同结合和随后水解 ATP 驱动的。尽管之前有许多研究,但变构通讯的精确机制和相关的结构变化仍然难以捉摸。在本文中,我们描述了一系列全原子、无偏、分子动力学模拟,时间跨度相对较长(50-100ns),涉及单个孤立的 GroEL 亚基和七聚体 GroEL 环,存在和不存在 ATP 的情况下。结合对单个环进行距离约束偏向模拟的结果,阐明了该复杂分子中 ATP 驱动结构变化的最早阶段的原子细节。我们的结果与以前对孤立亚基的建模研究以及对单个环的粗粒度强制模拟结果广泛一致。这些是 GroEL 单环复合物的第一个报道的全原子模拟,并为在亚基界面处带正电荷的残基 K80、K277、R284、R285 和 E388 在变构信号传递中的作用提供了独特的见解。这些模拟还证明了在足够长的时间尺度上,在典型的高性能计算设施上对非常大的系统进行全原子模拟以显示生物相关过程中最早事件的起源的可行性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验