School of Biochemistry, University of Bristol, Bristol, United Kingdom.
Department of Chemistry, King's College London, London, United Kingdom.
Elife. 2019 Jan 2;8:e41803. doi: 10.7554/eLife.41803.
Transport of proteins across membranes is a fundamental process, achieved in every cell by the 'Sec' translocon. In prokaryotes, SecYEG associates with the motor ATPase SecA to carry out translocation for pre-protein secretion. Previously, we proposed a Brownian ratchet model for transport, whereby the free energy of ATP-turnover favours the directional diffusion of the polypeptide (Allen et al., 2016). Here, we show that ATP enhances this process by modulating secondary structure formation within the translocating protein. A combination of molecular simulation with hydrogendeuterium-exchange mass spectrometry and electron paramagnetic resonance spectroscopy reveal an asymmetry across the membrane: ATP-induced conformational changes in the cytosolic cavity promote unfolded pre-protein structure, while the exterior cavity favours its formation. This ability to exploit structure within a pre-protein is an unexplored area of protein transport, which may apply to other protein transporters, such as those of the endoplasmic reticulum and mitochondria.
蛋白质跨膜运输是一种基本过程,每个细胞都通过“Sec”转运器来实现。在原核生物中,SecYEG 与马达 ATP 酶 SecA 结合,以进行前蛋白分泌的易位。此前,我们提出了一个布朗棘轮模型来解释转运过程,其中 ATP 转换的自由能有利于多肽的定向扩散(Allen 等人,2016 年)。在这里,我们表明,ATP 通过调节易位蛋白内的二级结构形成来增强该过程。将分子模拟与氢氘交换质谱和电子顺磁共振波谱学相结合,揭示了膜两侧的不对称性:ATP 诱导的细胞质腔构象变化促进未折叠的前蛋白结构,而外腔有利于其形成。这种在预蛋白中利用结构的能力是蛋白质转运的一个未被探索的领域,它可能适用于其他蛋白转运器,如内质网和线粒体的蛋白转运器。