Stem Cell Engineering Group, University of Bonn—Medical Center, LIFE & BRAIN Center, Bonn, Germany.
Stem Cell Rev Rep. 2012 Sep;8(3):672-84. doi: 10.1007/s12015-011-9335-6.
Stem cells have become a major focus of scientific interest as a potential source of somatic cell types for biomedical applications. Understanding and controlling the elicitors and mechanisms in differentiation of pluripotent stem cell-derived somatic cell types remains a key challenge. The major types of molecular processes that control cellular differentiation involve evolutionary conserved cell signaling pathways. Notch receptors participate in a wide variety of biological processes, including cell fate decisions of stem cells. This study explores the potential of protein transduction to directly deliver recombinant Notch-1 intracellular domain (NICD) into mammalian cells in order to accomplish transgene-free Notch activation. We engineered a cell-permeant version of NICD and explored its function on mouse and human neural stem cells. We show that NICD transduction modulates known direct and indirect Notch target genes and antagonizes the DAPT-mediated inhibition of Notch signaling on the transcriptional level. Moreover, NICD enhances cell proliferation accompanied by increased cyclin D1 and decreased p27 protein levels. In the absence of growth factors NICD strongly impairs neuronal differentiation while being insufficient to keep cells in a proliferative state. Furthermore, our studies depict NICD protein transduction as a novel tool for a time and dose-dependent non-genetic modulation of Notch signaling to decipher its cellular functions.
干细胞作为生物医学应用中体细胞类型的潜在来源,已成为科学研究的主要焦点。理解和控制多能干细胞衍生体细胞类型分化中的诱导剂和机制仍然是一个关键挑战。控制细胞分化的主要分子过程类型涉及进化保守的细胞信号通路。Notch 受体参与多种生物学过程,包括干细胞的细胞命运决定。本研究探讨了蛋白转导将重组 Notch-1 细胞内结构域 (NICD) 直接递送至哺乳动物细胞以实现无转基因 Notch 激活的潜力。我们设计了一种具有细胞通透性的 NICD,并探索了其在小鼠和人类神经干细胞中的功能。我们表明 NICD 转导调节已知的直接和间接 Notch 靶基因,并拮抗 DAPT 介导的 Notch 信号转导在转录水平上的抑制。此外,NICD 增强细胞增殖,伴随细胞周期蛋白 D1 水平升高和 p27 蛋白水平降低。在没有生长因子的情况下,NICD 强烈抑制神经元分化,而不足以使细胞保持增殖状态。此外,我们的研究将 NICD 蛋白转导描绘为一种新型工具,用于时间和剂量依赖性的非遗传 Notch 信号调控,以解析其细胞功能。