Suppr超能文献

使用经过最优参数化的力场进行蛋白质结构计算和质量评估的化学位移预测。

Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field.

机构信息

Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark.

出版信息

Prog Nucl Magn Reson Spectrosc. 2012 Jan;60:1-28. doi: 10.1016/j.pnmrs.2011.05.002. Epub 2011 May 23.

Abstract

The exquisite sensitivity of chemical shifts as reporters of structural information, and the ability to measure them routinely and accurately, gives great import to formulations that elucidate the structure-chemical-shift relationship. Here we present a new and highly accurate, precise, and robust formulation for the prediction of NMR chemical shifts from protein structures. Our approach, shAIC (shift prediction guided by Akaikes Information Criterion), capitalizes on mathematical ideas and an information-theoretic principle, to represent the functional form of the relationship between structure and chemical shift as a parsimonious sum of smooth analytical potentials which optimally takes into account short-, medium-, and long-range parameters in a nuclei-specific manner to capture potential chemical shift perturbations caused by distant nuclei. shAIC outperforms the state-of-the-art methods that use analytical formulations. Moreover, for structures derived by NMR or structures with novel folds, shAIC delivers better overall results; even when it is compared to sophisticated machine learning approaches. shAIC provides for a computationally lightweight implementation that is unimpeded by molecular size, making it an ideal for use as a force field.

摘要

化学位移作为结构信息的灵敏指示剂,其精确测量的能力使得阐明结构-化学位移关系的公式具有重要意义。在这里,我们提出了一种新的、高度准确、精确和稳健的方法,用于从蛋白质结构预测 NMR 化学位移。我们的方法 shAIC(基于 Akaike 信息准则的位移预测)利用数学思想和信息论原理,将结构和化学位移之间的关系的函数形式表示为简洁的平滑分析势能之和,以最佳方式考虑了以核为中心的短程、中程和远程参数,以捕获由远程核引起的潜在化学位移扰动。shAIC 优于使用分析公式的最先进方法。此外,对于通过 NMR 获得的结构或具有新颖折叠的结构,shAIC 提供了更好的整体结果;即使与复杂的机器学习方法相比也是如此。shAIC 提供了一种计算量轻的实现,不受分子大小的限制,使其成为力场的理想选择。

相似文献

3
Mapping of protein structural ensembles by chemical shifts.通过化学位移映射蛋白质结构集合。
J Biomol NMR. 2010 Oct;48(2):71-83. doi: 10.1007/s10858-010-9438-4. Epub 2010 Aug 1.
8
SHIFTX2: significantly improved protein chemical shift prediction.SHIFTX2:显著提高了蛋白质化学位移预测能力。
J Biomol NMR. 2011 May;50(1):43-57. doi: 10.1007/s10858-011-9478-4. Epub 2011 Mar 30.

引用本文的文献

本文引用的文献

1
Interpreting protein chemical shift data.解读蛋白质化学位移数据。
Prog Nucl Magn Reson Spectrosc. 2011 Feb;58(1-2):62-87. doi: 10.1016/j.pnmrs.2010.07.004. Epub 2010 Aug 5.
5
An information-theoretical approach to phylogeography.一种系统发育地理学的信息论方法。
Mol Ecol. 2009 Oct;18(20):4270-82. doi: 10.1111/j.1365-294X.2009.04327.x. Epub 2009 Sep 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验