Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark.
Prog Nucl Magn Reson Spectrosc. 2012 Jan;60:1-28. doi: 10.1016/j.pnmrs.2011.05.002. Epub 2011 May 23.
The exquisite sensitivity of chemical shifts as reporters of structural information, and the ability to measure them routinely and accurately, gives great import to formulations that elucidate the structure-chemical-shift relationship. Here we present a new and highly accurate, precise, and robust formulation for the prediction of NMR chemical shifts from protein structures. Our approach, shAIC (shift prediction guided by Akaikes Information Criterion), capitalizes on mathematical ideas and an information-theoretic principle, to represent the functional form of the relationship between structure and chemical shift as a parsimonious sum of smooth analytical potentials which optimally takes into account short-, medium-, and long-range parameters in a nuclei-specific manner to capture potential chemical shift perturbations caused by distant nuclei. shAIC outperforms the state-of-the-art methods that use analytical formulations. Moreover, for structures derived by NMR or structures with novel folds, shAIC delivers better overall results; even when it is compared to sophisticated machine learning approaches. shAIC provides for a computationally lightweight implementation that is unimpeded by molecular size, making it an ideal for use as a force field.
化学位移作为结构信息的灵敏指示剂,其精确测量的能力使得阐明结构-化学位移关系的公式具有重要意义。在这里,我们提出了一种新的、高度准确、精确和稳健的方法,用于从蛋白质结构预测 NMR 化学位移。我们的方法 shAIC(基于 Akaike 信息准则的位移预测)利用数学思想和信息论原理,将结构和化学位移之间的关系的函数形式表示为简洁的平滑分析势能之和,以最佳方式考虑了以核为中心的短程、中程和远程参数,以捕获由远程核引起的潜在化学位移扰动。shAIC 优于使用分析公式的最先进方法。此外,对于通过 NMR 获得的结构或具有新颖折叠的结构,shAIC 提供了更好的整体结果;即使与复杂的机器学习方法相比也是如此。shAIC 提供了一种计算量轻的实现,不受分子大小的限制,使其成为力场的理想选择。