Makromolekulare Chemie II, Universität Bayreuth , 95440 Bayreuth, Germany.
Biomacromolecules. 2012 Mar 12;13(3):857-66. doi: 10.1021/bm2017756. Epub 2012 Feb 22.
We present the synthesis of dual-responsive (pH and temperature) magnetic core-shell nanoparticles utilizing the grafting-from approach. First, oleic acid stabilized superparamagnetic maghemite (γ-Fe(2)O(3)) nanoparticles (NPs), prepared by thermal decomposition of iron pentacarbonyl, were surface-functionalized with ATRP initiating sites bearing a dopamine anchor group via ligand exchange. Subsequently, 2-(dimethylamino)ethyl methacrylate (DMAEMA) was polymerized from the surface by ATRP, yielding dual-responsive magnetic core-shell NPs (γ-Fe(2)O(3)@PDMAEMA). The attachment of the dopamine anchor group on the nanoparticle's surface is shown to be reversible to a certain extent, resulting in a grafting density of 0.15 chains per nm(2) after purification. Nevertheless, the grafted NPs show excellent long-term stability in water over a wide pH range and exhibit a pH- and temperature-dependent reversible agglomeration, as revealed by turbidimetry. The efficiency of γ-Fe(2)O(3)@PDMAEMA hybrid nanoparticles as a potential transfection agent was explored under standard conditions in CHO-K1 cells. Remarkably, γ-Fe(2)O(3)@PDMAEMA led to a 2-fold increase in the transfection efficiency without increasing the cytotoxicity, as compared to polyethyleneimine (PEI), and yielded on average more than 50% transfected cells. Moreover, after transfection with the hybrid nanoparticles, the cells acquired magnetic properties that could be used for selective isolation of transfected cells.
我们提出了一种利用接枝法合成双响应(pH 和温度)磁性核壳纳米粒子的方法。首先,通过热分解五羰基铁制备油酸稳定的超顺磁磁铁矿(γ-Fe2O3)纳米粒子(NPs),然后通过配体交换将具有多巴胺锚定基团的 ATRP 引发点表面功能化。随后,通过 ATRP 从表面聚合 2-(二甲氨基)乙基甲基丙烯酸酯(DMAEMA),得到双响应磁性核壳纳米粒子(γ-Fe2O3@PDMAEMA)。表面多巴胺锚定基团的附着在一定程度上是可逆的,经过纯化后接枝密度为 0.15 链/nm2。然而,接枝纳米粒子在宽 pH 范围内的水中表现出优异的长期稳定性,并通过浊度法显示出 pH 和温度依赖性的可逆聚集。在 CHO-K1 细胞中,在标准条件下探索了γ-Fe2O3@PDMAEMA 杂化纳米粒子作为潜在转染剂的效率。值得注意的是,与聚乙烯亚胺(PEI)相比,γ-Fe2O3@PDMAEMA 使转染效率提高了 2 倍,而细胞毒性没有增加,平均转染细胞数超过 50%。此外,在用杂化纳米粒子转染后,细胞获得了可用于选择性分离转染细胞的磁性。