文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁性纳米粒子复合材料:协同效应与应用。

Magnetic Nanoparticle Composites: Synergistic Effects and Applications.

机构信息

Biophysics Group Department of Physics and Astronomy University College London London WC1E 6BT UK.

UCL Healthcare Biomagnetic and Nanomaterials Laboratories 21 Albemarle Street London W1S 4BS UK.

出版信息

Adv Sci (Weinh). 2021 May 5;8(12):2004951. doi: 10.1002/advs.202004951. eCollection 2021 Jun.


DOI:10.1002/advs.202004951
PMID:34194936
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8224446/
Abstract

Composite materials are made from two or more constituent materials with distinct physical or chemical properties that, when combined, produce a material with characteristics which are at least to some degree different from its individual components. Nanocomposite materials are composed of different materials of which at least one has nanoscale dimensions. Common types of nanocomposites consist of a combination of two different elements, with a nanoparticle that is linked to, or surrounded by, another organic or inorganic material, for example in a core-shell or heterostructure configuration. A general family of nanoparticle composites concerns the coating of a nanoscale material by a polymer, SiO or carbon. Other materials, such as graphene or graphene oxide (GO), are used as supports forming composites when nanoscale materials are deposited onto them. In this Review we focus on magnetic nanocomposites, describing their synthetic methods, physical properties and applications. Several types of nanocomposites are presented, according to their composition, morphology or surface functionalization. Their applications are largely due to the synergistic effects that appear thanks to the co-existence of two different materials and to their interface, resulting in properties often better than those of their single-phase components. Applications discussed concern magnetically separable catalysts, water treatment, diagnostics-sensing and biomedicine.

摘要

复合材料由两种或两种以上具有不同物理或化学性质的组成材料制成,当组合在一起时,产生的材料的特性至少在某种程度上与其单个组件不同。纳米复合材料由至少有一种具有纳米尺度尺寸的不同材料组成。常见的纳米复合材料包括两种不同元素的组合,其中一种纳米颗粒与另一种有机或无机材料相连或被其包围,例如在核壳或异质结构配置中。一类纳米颗粒复合材料涉及纳米级材料被聚合物、SiO 或碳涂覆。其他材料,如石墨烯或氧化石墨烯 (GO),则用作支撑物,当纳米级材料沉积在其上时形成复合材料。在这篇综述中,我们专注于磁性纳米复合材料,描述它们的合成方法、物理性质和应用。根据它们的组成、形态或表面功能化,介绍了几种类型的纳米复合材料。它们的应用主要归因于两种不同材料及其界面共存产生的协同效应,导致性能通常优于其单相成分。讨论的应用包括可分离催化剂、水处理、诊断传感和生物医学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/486089cb52e2/ADVS-8-2004951-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/1d1431d6fcc1/ADVS-8-2004951-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/16e26323384a/ADVS-8-2004951-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/6216f36b27bb/ADVS-8-2004951-g035.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/a61617c6e381/ADVS-8-2004951-g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/60b73c96fd03/ADVS-8-2004951-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/adf24090fde9/ADVS-8-2004951-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/dde7809ca264/ADVS-8-2004951-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/632e03b8386f/ADVS-8-2004951-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/f1d864b70a94/ADVS-8-2004951-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/4ef4aaaa64af/ADVS-8-2004951-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/6c2d181ad470/ADVS-8-2004951-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/1af4374586b3/ADVS-8-2004951-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/98c5e281b7b7/ADVS-8-2004951-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/7bc1daf77b72/ADVS-8-2004951-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/76ae4c75a019/ADVS-8-2004951-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/428941f335a7/ADVS-8-2004951-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/256632b5ced6/ADVS-8-2004951-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/37df282af6d9/ADVS-8-2004951-g034.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/38072e118cea/ADVS-8-2004951-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/a8c3ca491db3/ADVS-8-2004951-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/37a4e9c58e7a/ADVS-8-2004951-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/19380516f894/ADVS-8-2004951-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/028a5b6aa0d9/ADVS-8-2004951-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/e3386549072d/ADVS-8-2004951-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/6da44ccce28e/ADVS-8-2004951-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/8d01ecb23fe7/ADVS-8-2004951-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/fc5be9d3cfca/ADVS-8-2004951-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/0d8edf2e1b4c/ADVS-8-2004951-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/05acbe22e805/ADVS-8-2004951-g033.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/c395aae22247/ADVS-8-2004951-g032.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/486089cb52e2/ADVS-8-2004951-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/1d1431d6fcc1/ADVS-8-2004951-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/16e26323384a/ADVS-8-2004951-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/6216f36b27bb/ADVS-8-2004951-g035.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/a61617c6e381/ADVS-8-2004951-g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/60b73c96fd03/ADVS-8-2004951-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/adf24090fde9/ADVS-8-2004951-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/dde7809ca264/ADVS-8-2004951-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/632e03b8386f/ADVS-8-2004951-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/f1d864b70a94/ADVS-8-2004951-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/4ef4aaaa64af/ADVS-8-2004951-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/6c2d181ad470/ADVS-8-2004951-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/1af4374586b3/ADVS-8-2004951-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/98c5e281b7b7/ADVS-8-2004951-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/7bc1daf77b72/ADVS-8-2004951-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/76ae4c75a019/ADVS-8-2004951-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/428941f335a7/ADVS-8-2004951-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/256632b5ced6/ADVS-8-2004951-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/37df282af6d9/ADVS-8-2004951-g034.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/38072e118cea/ADVS-8-2004951-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/a8c3ca491db3/ADVS-8-2004951-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/37a4e9c58e7a/ADVS-8-2004951-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/19380516f894/ADVS-8-2004951-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/028a5b6aa0d9/ADVS-8-2004951-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/e3386549072d/ADVS-8-2004951-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/6da44ccce28e/ADVS-8-2004951-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/8d01ecb23fe7/ADVS-8-2004951-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/fc5be9d3cfca/ADVS-8-2004951-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/0d8edf2e1b4c/ADVS-8-2004951-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/05acbe22e805/ADVS-8-2004951-g033.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/c395aae22247/ADVS-8-2004951-g032.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b0/8224446/486089cb52e2/ADVS-8-2004951-g006.jpg

相似文献

[1]
Magnetic Nanoparticle Composites: Synergistic Effects and Applications.

Adv Sci (Weinh). 2021-6

[2]
Ag and Au nanoparticles/reduced graphene oxide composite materials: Synthesis and application in diagnostics and therapeutics.

Adv Colloid Interface Sci. 2019-7-17

[3]
Water oxidation catalysis by birnessite@iron oxide core-shell nanocomposites.

Inorg Chem. 2015-3-16

[4]
Biomedical applications of biodegradable polycaprolactone-functionalized magnetic iron oxides nanoparticles and their polymer nanocomposites.

Colloids Surf B Biointerfaces. 2023-7

[5]
Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues.

Nanoscale. 2016-4-21

[6]
Recent development of metal-organic framework nanocomposites for biomedical applications.

Biomaterials. 2022-2

[7]
Advances in Graphene/Inorganic Nanoparticle Composites for Catalytic Applications.

Chem Rec. 2022-7

[8]
Flexible magnetic polyurethane/FeO nanoparticles as organic-inorganic nanocomposites for biomedical applications: Properties and cell behavior.

Mater Sci Eng C Mater Biol Appl. 2016-12-28

[9]
Synthesis of Graphene-Based Nanocomposites for Environmental Remediation Applications: A Review.

Molecules. 2022-9-29

[10]
Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering.

Biomacromolecules. 2013-2-27

引用本文的文献

[1]
Exploring the Role of Advanced Composites and Biocomposites in Agricultural Machinery and Equipment: Insights into Design, Performance, and Sustainability.

Polymers (Basel). 2025-6-18

[2]
Synthesis of SrAlO and MgCoO bimetallic inorganic nanomaterials for thermal and electrochemical applications.

Discov Nano. 2025-2-11

[3]
One-Pot Synthesis and Characterization of Magnetic α-FeO/CuO/CuFeO Nanocomposite for Multifunctional Therapeutic Applications.

ChemistryOpen. 2025-2

[4]
Thermomechanical properties of confined magnetic nanoparticles in electrospun polyacrylonitrile nanofiber matrix exposed to a magnetic environment: structure, morphology, and stabilization (cyclization).

Nanoscale Adv. 2024-9-13

[5]
Biocatalyst immobilization on magnetic nano-architectures for potential applications in condensation reactions.

Microb Biotechnol. 2024-6

[6]
Magneto-optical nanosystems for tumor multimodal imaging and therapy .

Mater Today Bio. 2024-3-16

[7]
Effect of Organic Coating Variation on the Electric and Magnetic Behavior of Ferrite Nanoparticles.

ACS Phys Chem Au. 2023-10-19

[8]
Mini review about metal organic framework (MOF)-based wearable sensors: Challenges and prospects.

Heliyon. 2023-10-26

[9]
pH-responsive magnetic graphene oxide composite as an adsorbent with high affinity for rapid capture of nucleosides.

Mikrochim Acta. 2023-8-23

[10]
Advances in Organic-Inorganic Hybrid Latex Particles via In Situ Emulsion Polymerization.

Polymers (Basel). 2023-7-10

本文引用的文献

[1]
High-throughput chemical and chemoenzymatic approaches to saccharide-coated magnetic nanoparticles for MRI.

Nanoscale Adv. 2019-7-29

[2]
Enhanced Pulsatile Drug Release from Injectable Magnetic Hydrogels with Embedded Thermosensitive Microgels.

ACS Macro Lett. 2015-3-17

[3]
Synthesis of multifunctional CuFeO-reduced graphene oxide nanocomposite: an efficient magnetically separable catalyst as well as high performance supercapacitor and first-principles calculations of its electronic structures.

RSC Adv. 2018-8-3

[4]
Gadolinium-labelled iron/iron oxide core/shell nanoparticles as - contrast agent for magnetic resonance imaging.

RSC Adv. 2018-7-26

[5]
Magnetic CoFeO nanoparticles supported on graphene oxide (CoFeO/GO) with high catalytic activity for peroxymonosulfate activation and degradation of rhodamine B.

RSC Adv. 2018-1-3

[6]
Modified core-shell magnetic mesoporous zirconia nanoparticles formed through a facile "outside-to-inside" way for CT/MRI dual-modal imaging and magnetic targeting cancer chemotherapy.

RSC Adv. 2019-4-30

[7]
A Supersensitive CTC Analysis System Based on Triangular Silver Nanoprisms and SPION with Function of Capture, Enrichment, Detection, and Release.

ACS Biomater Sci Eng. 2018-3-12

[8]
A review on numerical modeling for magnetic nanoparticle hyperthermia: Progress and challenges.

J Therm Biol. 2020-7

[9]
Potential Toxicity of Iron Oxide Magnetic Nanoparticles: A Review.

Molecules. 2020-7-10

[10]
Facile synthesis of magnetic covalent organic frameworks for the hydrophilic enrichment of N-glycopeptides.

J Mater Chem B. 2017-6-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索