Suppr超能文献

整合来自多个来源的数据进行同步模型分析:从奈韦拉平群体药代动力学获得的经验。

Integration of data from multiple sources for simultaneous modelling analysis: experience from nevirapine population pharmacokinetics.

机构信息

Department of Pharmaceutical Bioscience, Uppsala University, Sweden.

出版信息

Br J Clin Pharmacol. 2012 Sep;74(3):465-76. doi: 10.1111/j.1365-2125.2012.04205.x.

Abstract

AIMS

To propose a modelling strategy to efficiently integrate data from different sources in one simultaneous analysis, using nevirapine population pharmacokinetic data as an example.

METHODS

Data from three studies including 115 human immunodeficiency virus-infected South African adults were used. Patients were on antiretroviral therapy regimens including 200 mg nevirapine twice daily and sampled at steady state. A development process was suggested, implemented in NONMEM7 and the final model evaluated with an external data set.

RESULTS

A stepwise approach proved efficient. Model development started with the intensively sampled data. Data were added sequentially, using visual predictive checks for inspecting their compatibility with the existing model. Covariate exploration was carried out, and auxiliary regression models were designed for imputation of missing covariates. Nevirapine pharmacokinetics was described by a one-compartment model with absorption through two transit compartments. Body size was accounted for using allometric scaling. The model included a mixture of two subpopulations with different typical values of clearance, namely fast (3.12 l h(-1)) and slow metabolizers (1.45 l h(-1)), with 17% probability of belonging to the latter. Absorption displayed large between-occasion variability, and food slowed the absorption mean transit time from 0.6 to 2.5 h. Concomitant antitubercular treatment including rifampicin typically decreased bioavailability by 39%, with significant between-subject variability. Visual predictive checks of external validation data indicated good predictive performance.

CONCLUSIONS

The development strategy succeeded in integrating data from different sources to produce a model with robust parameter estimates. This work paves the way for the creation of a nevirapine mega-model, including additional data from numerous diverse sources.

摘要

目的

提出一种建模策略,以便在一次同步分析中有效地整合来自不同来源的数据,以奈韦拉平群体药代动力学数据为例。

方法

使用了包括 115 名南非艾滋病毒感染者在内的三项研究的数据。患者接受包含每日两次 200mg 奈韦拉平的抗逆转录病毒治疗方案,并在稳态时采样。提出了一个开发过程,在 NONMEM7 中实现,并使用外部数据集评估最终模型。

结果

逐步方法被证明是有效的。模型开发从密集采样数据开始。数据依次添加,使用可视化预测检查来检查它们与现有模型的兼容性。进行了协变量探索,并设计了辅助回归模型来填补缺失协变量。奈韦拉平药代动力学采用一个一室模型描述,通过两个转运室吸收。使用比例缩放来解释体型。该模型包括两个亚群的混合物,具有不同的清除典型值,即快速(3.12 l/h)和慢速代谢物(1.45 l/h),后者的概率为 17%。吸收显示出较大的个体间变异性,并且食物使吸收平均转运时间从 0.6 小时延长至 2.5 小时。包括利福平在内的抗结核治疗通常会使生物利用度降低 39%,具有显著的个体间变异性。外部验证数据的可视化预测检查表明了良好的预测性能。

结论

该开发策略成功地整合了来自不同来源的数据,产生了具有稳健参数估计的模型。这项工作为创建包括来自众多不同来源的额外数据的奈韦拉平 mega 模型铺平了道路。

相似文献

引用本文的文献

4
Efficient and relevant stepwise covariate model building for pharmacometrics.用于药代动力学的高效相关逐步协变量模型构建。
CPT Pharmacometrics Syst Pharmacol. 2022 Sep;11(9):1210-1222. doi: 10.1002/psp4.12838. Epub 2022 Jul 19.

本文引用的文献

8
Piraña and PCluster: a modeling environment and cluster infrastructure for NONMEM.Piraña 和 PCluster:NONMEM 的建模环境和集群基础设施。
Comput Methods Programs Biomed. 2011 Jan;101(1):72-9. doi: 10.1016/j.cmpb.2010.04.018. Epub 2010 Jun 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验