Wang Kai, Edmondson Andrew C, Li Mingyao, Gao Fan, Qasim Atif N, Devaney Joseph M, Burnett Mary Susan, Waterworth Dawn M, Mooser Vincent, Grant Struan F A, Epstein Stephen E, Reilly Muredach P, Hakonarson Hakon, Rader Daniel J
Center for Applied Genomics, Children's Hospital of Philadelphia Philadelphia, PA, USA.
Front Genet. 2011 Jul 5;2:41. doi: 10.3389/fgene.2011.00041. eCollection 2011.
Pathway-based association methods have been proposed to be an effective approach in identifying disease genes, when single-marker association tests do not have sufficient power. The analysis of quantitative traits may be benefited from these approaches, by sampling from two extreme tails of the distribution. Here we tested a pathway association approach on a small genome-wide association study (GWAS) on 653 subjects with extremely high high-density lipoprotein cholesterol (HDL-C) levels and 784 subjects with low HDL-C levels. We identified 102 genes in the sterol transport and metabolism pathways that collectively associate with HDL-C levels, and replicated these association signals in an independent GWAS. Interestingly, the pathways include 18 genes implicated in previous GWAS on lipid traits, suggesting that genuine HDL-C genes are highly enriched in these pathways. Additionally, multiple biologically relevant loci in the pathways were not detected by previous GWAS, including genes implicated in previous candidate gene association studies (such as LEPR, APOA2, HDLBP, SOAT2), genes that cause Mendelian forms of lipid disorders (such as DHCR24), and genes expressing dyslipidemia phenotypes in knockout mice (such as SOAT1, PON1). Our study suggests that sampling from two extreme tails of a quantitative trait and examining genetic pathways may yield biological insights from smaller samples than are generally required using single-marker analysis in large-scale GWAS. Our results also implicate that functionally related genes work together to regulate complex quantitative traits, and that future large-scale studies may benefit from pathway-association approaches to identify novel pathways regulating HDL-C levels.
当单标记关联测试的效能不足时,基于通路的关联方法已被认为是识别疾病基因的有效途径。通过从分布的两个极端尾部进行抽样,对数量性状的分析可能会从这些方法中受益。在此,我们在一项小型全基因组关联研究(GWAS)中测试了一种通路关联方法,该研究涉及653名高密度脂蛋白胆固醇(HDL-C)水平极高的受试者和784名HDL-C水平低的受试者。我们在固醇转运和代谢通路中鉴定出102个与HDL-C水平共同关联的基因,并在一项独立的GWAS中重复了这些关联信号。有趣的是,这些通路包括18个在先前关于脂质性状的GWAS中涉及的基因,这表明真正的HDL-C基因在这些通路中高度富集。此外,先前的GWAS未检测到这些通路中的多个生物学相关位点,包括先前候选基因关联研究中涉及的基因(如LEPR、APOA2、HDLBP、SOAT2)、导致孟德尔形式脂质紊乱的基因(如DHCR24)以及在基因敲除小鼠中表达血脂异常表型的基因(如SOAT1、PON1)。我们的研究表明,从数量性状的两个极端尾部进行抽样并检查遗传通路,可能比在大规模GWAS中使用单标记分析通常所需的样本量更小就能获得生物学见解。我们的结果还表明,功能相关的基因共同作用以调节复杂的数量性状,并且未来的大规模研究可能会从通路关联方法中受益,以识别调节HDL-C水平的新通路。