Suppr超能文献

血细胞比容对动脉气体栓塞动力学影响的计算模拟

Computational simulation of hematocrit effects on arterial gas embolism dynamics.

作者信息

Mukundakrishnan Karthik, Ayyaswamy Portonovo S, Eckmann David M

机构信息

Dassault Systemes Simulia Corp., Rising Sun Mills, RI, USA.

出版信息

Aviat Space Environ Med. 2012 Feb;83(2):92-101. doi: 10.3357/asem.3085.2012.

Abstract

BACKGROUND

Recent computational investigations have shed light into the various hydrodynamic mechanisms at play during arterial gas embolism that may result in endothelial cell (EC) injury. Other recent studies have suggested that variations in hematocrit level may play an important role in determining the severity of neurological complications due to decompression sickness associated with gas embolism.

METHODS

To develop a comprehensive picture, we computationally modeled the effect of hematocrit variations on the motion of a nearly occluding gas bubble in arterial blood vessels of various sizes. The computational methodology is based on an axisymmetric finite difference immersed boundary numerical method to precisely track the blood-bubble dynamics of the interface. Hematocrit variations are taken to be in the range of 0.2-0.6. The chosen blood vessel sizes correspond to small arteries and small and large arterioles in normal humans.

RESULTS

Relevant hydrodynamic interactions between the gas bubble and EC-lined vessel lumen have been characterized and quantified as a function of hematocrit levels. In particular, the variations in shear stress, spatial and temporal shear stress gradients, and the gap between bubble and vascular endothelium surfaces that contribute to EC injury have been computed.

DISCUSSION

The results suggest that in small arteries, the deleterious hydrodynamic effects of the gas embolism on an EC-lined cell wall are significantly amplified as the hematocrit levels increase. However, such pronounced variations with hematocrit levels are not observed in the arterioles.

摘要

背景

最近的计算机研究揭示了动脉气体栓塞过程中起作用的各种流体动力学机制,这些机制可能导致内皮细胞(EC)损伤。其他近期研究表明,血细胞比容水平的变化可能在确定与气体栓塞相关的减压病所致神经并发症的严重程度方面发挥重要作用。

方法

为了全面了解情况,我们通过计算机模拟了血细胞比容变化对不同大小动脉血管中近乎阻塞的气泡运动的影响。计算方法基于轴对称有限差分浸入边界数值方法,以精确跟踪界面的血泡动力学。血细胞比容变化范围为0.2 - 0.6。所选血管大小对应于正常人体内的小动脉以及小和大动脉小分支。

结果

已将气泡与内皮细胞衬里的血管腔之间的相关流体动力学相互作用表征并量化为血细胞比容水平的函数。特别是,已经计算了有助于内皮细胞损伤的剪切应力、空间和时间剪切应力梯度以及气泡与血管内皮表面之间间隙的变化。

讨论

结果表明,在小动脉中,随着血细胞比容水平的增加,气体栓塞对内皮细胞衬里细胞壁的有害流体动力学效应会显著放大。然而,在小动脉小分支中未观察到这种随血细胞比容水平的明显变化。

相似文献

1
Computational simulation of hematocrit effects on arterial gas embolism dynamics.
Aviat Space Environ Med. 2012 Feb;83(2):92-101. doi: 10.3357/asem.3085.2012.
2
Bubble motion in a blood vessel: shear stress induced endothelial cell injury.
J Biomech Eng. 2009 Jul;131(7):074516. doi: 10.1115/1.3153310.
3
Finite-sized gas bubble motion in a blood vessel: non-Newtonian effects.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 2):036303. doi: 10.1103/PhysRevE.78.036303. Epub 2008 Sep 5.
4
Effect of a soluble surfactant on a finite sized bubble motion in a blood vessel.
J Fluid Mech. 2010 Jan 1;642:509-539. doi: 10.1017/S0022112009992692.
5
Surfactant properties differentially influence intravascular gas embolism mechanics.
Ann Biomed Eng. 2010 Dec;38(12):3649-63. doi: 10.1007/s10439-010-0120-5. Epub 2010 Jul 13.
6
Direct numerical simulations of micro-bubble expansion in gas embolotherapy.
J Biomech Eng. 2004 Dec;126(6):745-59. doi: 10.1115/1.1824131.
9
Mathematical model of gas bubble evolution in a straight tube.
J Biomech Eng. 1999 Oct;121(5):505-13. doi: 10.1115/1.2835080.
10
DCS or DCI? The difference and why it matters.
Diving Hyperb Med. 2019 Sep 30;49(3):152-153. doi: 10.28920/dhm49.3.152-153.

引用本文的文献

1
Nanocarrier Hydrodynamics and Binding in Targeted Drug Delivery: Challenges in Numerical Modeling and Experimental Validation.
J Nanotechnol Eng Med. 2013 Feb;4(1):101011-1010115. doi: 10.1115/1.4024004. Epub 2013 Jul 11.

本文引用的文献

2
Mechanotransductional basis of endothelial cell response to intravascular bubbles.
Integr Biol (Camb). 2011 Oct;3(10):1033-42. doi: 10.1039/c1ib00017a. Epub 2011 Sep 19.
3
Air bubble contact with endothelial cells in vitro induces calcium influx and IP3-dependent release of calcium stores.
Am J Physiol Cell Physiol. 2011 Sep;301(3):C679-86. doi: 10.1152/ajpcell.00046.2011. Epub 2011 Jun 1.
5
Effect of a soluble surfactant on a finite sized bubble motion in a blood vessel.
J Fluid Mech. 2010 Jan 1;642:509-539. doi: 10.1017/S0022112009992692.
6
Bubble motion in a blood vessel: shear stress induced endothelial cell injury.
J Biomech Eng. 2009 Jul;131(7):074516. doi: 10.1115/1.3153310.
7
Bubble motion through a generalized power-law fluid flowing in a vertical tube.
Ann N Y Acad Sci. 2009 Apr;1161:256-67. doi: 10.1111/j.1749-6632.2009.04089.x.
8
Image-based finite element modeling of alveolar epithelial cell injury during airway reopening.
J Appl Physiol (1985). 2009 Jan;106(1):221-32. doi: 10.1152/japplphysiol.90688.2008. Epub 2008 Nov 13.
9
Finite-sized gas bubble motion in a blood vessel: non-Newtonian effects.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 2):036303. doi: 10.1103/PhysRevE.78.036303. Epub 2008 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验