Mukundakrishnan Karthik, Ayyaswamy Portonovo S, Eckmann David M
Dassault Systemes Simulia Corp., Rising Sun Mills, RI, USA.
Aviat Space Environ Med. 2012 Feb;83(2):92-101. doi: 10.3357/asem.3085.2012.
Recent computational investigations have shed light into the various hydrodynamic mechanisms at play during arterial gas embolism that may result in endothelial cell (EC) injury. Other recent studies have suggested that variations in hematocrit level may play an important role in determining the severity of neurological complications due to decompression sickness associated with gas embolism.
To develop a comprehensive picture, we computationally modeled the effect of hematocrit variations on the motion of a nearly occluding gas bubble in arterial blood vessels of various sizes. The computational methodology is based on an axisymmetric finite difference immersed boundary numerical method to precisely track the blood-bubble dynamics of the interface. Hematocrit variations are taken to be in the range of 0.2-0.6. The chosen blood vessel sizes correspond to small arteries and small and large arterioles in normal humans.
Relevant hydrodynamic interactions between the gas bubble and EC-lined vessel lumen have been characterized and quantified as a function of hematocrit levels. In particular, the variations in shear stress, spatial and temporal shear stress gradients, and the gap between bubble and vascular endothelium surfaces that contribute to EC injury have been computed.
The results suggest that in small arteries, the deleterious hydrodynamic effects of the gas embolism on an EC-lined cell wall are significantly amplified as the hematocrit levels increase. However, such pronounced variations with hematocrit levels are not observed in the arterioles.
最近的计算机研究揭示了动脉气体栓塞过程中起作用的各种流体动力学机制,这些机制可能导致内皮细胞(EC)损伤。其他近期研究表明,血细胞比容水平的变化可能在确定与气体栓塞相关的减压病所致神经并发症的严重程度方面发挥重要作用。
为了全面了解情况,我们通过计算机模拟了血细胞比容变化对不同大小动脉血管中近乎阻塞的气泡运动的影响。计算方法基于轴对称有限差分浸入边界数值方法,以精确跟踪界面的血泡动力学。血细胞比容变化范围为0.2 - 0.6。所选血管大小对应于正常人体内的小动脉以及小和大动脉小分支。
已将气泡与内皮细胞衬里的血管腔之间的相关流体动力学相互作用表征并量化为血细胞比容水平的函数。特别是,已经计算了有助于内皮细胞损伤的剪切应力、空间和时间剪切应力梯度以及气泡与血管内皮表面之间间隙的变化。
结果表明,在小动脉中,随着血细胞比容水平的增加,气体栓塞对内皮细胞衬里细胞壁的有害流体动力学效应会显著放大。然而,在小动脉小分支中未观察到这种随血细胞比容水平的明显变化。