Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 635 Charles E Young Drive South, Suite 225, Los Angeles, CA 90095, USA.
Neuroimage. 2012 Apr 2;60(2):1340-51. doi: 10.1016/j.neuroimage.2012.01.107. Epub 2012 Jan 28.
Cortical network architecture has predominantly been investigated visually using graph theory representations. In the context of human connectomics, such representations are not however always satisfactory because canonical methods for vertex-edge relationship representation do not always offer optimal insight regarding functional and structural neural connectivity. This article introduces an innovative framework for the depiction of human connectomics by employing a circular visualization method which is highly suitable to the exploration of central nervous system architecture. This type of representation, which we name a 'connectogram', has the capability of classifying neuroconnectivity relationships intuitively and elegantly. A multimodal protocol for MRI/DTI neuroimaging data acquisition is here combined with automatic image segmentation to (1) extract cortical and non-cortical anatomical structures, (2) calculate associated volumetrics and morphometrics, and (3) determine patient-specific connectivity profiles to generate subject-level and population-level connectograms. The scalability of our approach is demonstrated for a population of 50 adults. Two essential advantages of the connectogram are (1) the enormous potential for mapping and analyzing the human connectome, and (2) the unconstrained ability to expand and extend this analysis framework to the investigation of clinical populations and animal models.
皮质网络结构主要通过图论表示法进行视觉研究。然而,在人类连接组学的背景下,由于用于顶点-边关系表示的典型方法并不总是提供关于功能和结构神经连接的最佳见解,因此此类表示并不总是令人满意。本文通过采用非常适合探索中枢神经系统结构的圆形可视化方法,介绍了一种用于描绘人类连接组学的创新框架。这种表示形式,我们称之为“连接图”,具有直观而优雅地分类神经连接关系的能力。一种用于 MRI/DTI 神经影像学数据采集的多模态方案与自动图像分割相结合,用于 (1) 提取皮质和非皮质解剖结构,(2) 计算相关的体积和形态计量学,以及 (3) 确定患者特异性连接图来生成个体和人群连接图。我们的方法对于 50 名成年人的人群进行了可扩展性证明。连接图的两个重要优势是 (1) 映射和分析人类连接组的巨大潜力,以及 (2) 不受限制地扩展和扩展此分析框架以研究临床人群和动物模型的能力。