Suppr超能文献

人类皮质网络的环形表示,用于个体和群体水平连接组学可视化。

Circular representation of human cortical networks for subject and population-level connectomic visualization.

机构信息

Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 635 Charles E Young Drive South, Suite 225, Los Angeles, CA 90095, USA.

出版信息

Neuroimage. 2012 Apr 2;60(2):1340-51. doi: 10.1016/j.neuroimage.2012.01.107. Epub 2012 Jan 28.

Abstract

Cortical network architecture has predominantly been investigated visually using graph theory representations. In the context of human connectomics, such representations are not however always satisfactory because canonical methods for vertex-edge relationship representation do not always offer optimal insight regarding functional and structural neural connectivity. This article introduces an innovative framework for the depiction of human connectomics by employing a circular visualization method which is highly suitable to the exploration of central nervous system architecture. This type of representation, which we name a 'connectogram', has the capability of classifying neuroconnectivity relationships intuitively and elegantly. A multimodal protocol for MRI/DTI neuroimaging data acquisition is here combined with automatic image segmentation to (1) extract cortical and non-cortical anatomical structures, (2) calculate associated volumetrics and morphometrics, and (3) determine patient-specific connectivity profiles to generate subject-level and population-level connectograms. The scalability of our approach is demonstrated for a population of 50 adults. Two essential advantages of the connectogram are (1) the enormous potential for mapping and analyzing the human connectome, and (2) the unconstrained ability to expand and extend this analysis framework to the investigation of clinical populations and animal models.

摘要

皮质网络结构主要通过图论表示法进行视觉研究。然而,在人类连接组学的背景下,由于用于顶点-边关系表示的典型方法并不总是提供关于功能和结构神经连接的最佳见解,因此此类表示并不总是令人满意。本文通过采用非常适合探索中枢神经系统结构的圆形可视化方法,介绍了一种用于描绘人类连接组学的创新框架。这种表示形式,我们称之为“连接图”,具有直观而优雅地分类神经连接关系的能力。一种用于 MRI/DTI 神经影像学数据采集的多模态方案与自动图像分割相结合,用于 (1) 提取皮质和非皮质解剖结构,(2) 计算相关的体积和形态计量学,以及 (3) 确定患者特异性连接图来生成个体和人群连接图。我们的方法对于 50 名成年人的人群进行了可扩展性证明。连接图的两个重要优势是 (1) 映射和分析人类连接组的巨大潜力,以及 (2) 不受限制地扩展和扩展此分析框架以研究临床人群和动物模型的能力。

相似文献

1
Circular representation of human cortical networks for subject and population-level connectomic visualization.
Neuroimage. 2012 Apr 2;60(2):1340-51. doi: 10.1016/j.neuroimage.2012.01.107. Epub 2012 Jan 28.
2
The structural, connectomic and network covariance of the human brain.
Neuroimage. 2013 Feb 1;66:489-99. doi: 10.1016/j.neuroimage.2012.10.066. Epub 2012 Oct 29.
4
Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography.
Cereb Cortex. 2009 Mar;19(3):524-36. doi: 10.1093/cercor/bhn102. Epub 2008 Jun 20.
5
Mapping individual differences across brain network structure to function and behavior with connectome embedding.
Neuroimage. 2021 Nov 15;242:118469. doi: 10.1016/j.neuroimage.2021.118469. Epub 2021 Aug 11.
6
High-resolution connectomic fingerprints: Mapping neural identity and behavior.
Neuroimage. 2021 Apr 1;229:117695. doi: 10.1016/j.neuroimage.2020.117695. Epub 2021 Jan 8.
7
Inferring group-wise consistent multimodal brain networks via multi-view spectral clustering.
IEEE Trans Med Imaging. 2013 Sep;32(9):1576-86. doi: 10.1109/TMI.2013.2259248. Epub 2013 May 2.
8
A Connectomic Atlas of the Human Cerebrum-Chapter 5: The Insula and Opercular Cortex.
Oper Neurosurg (Hagerstown). 2018 Dec 1;15(suppl_1):S175-S244. doi: 10.1093/ons/opy259.
9
The structural-functional connectome and the default mode network of the human brain.
Neuroimage. 2014 Nov 15;102 Pt 1:142-51. doi: 10.1016/j.neuroimage.2013.09.069. Epub 2013 Oct 4.
10
Scale-Dependent Variability and Quantitative Regimes in Graph-Theoretic Representations of Human Cortical Networks.
Brain Connect. 2016 Mar;6(2):152-63. doi: 10.1089/brain.2015.0360. Epub 2016 Jan 27.

引用本文的文献

1
Real-time tractography: computation and visualization.
Brain Struct Funct. 2025 May 6;230(5):62. doi: 10.1007/s00429-025-02928-2.
2
Sexual and Metabolic Differences in Hippocampal Evolution: Alzheimer's Disease Implications.
Life (Basel). 2024 Nov 26;14(12):1547. doi: 10.3390/life14121547.
4
Identification and Connectomic Profiling of Concussion Using Bayesian Machine Learning.
J Neurotrauma. 2024 Aug;41(15-16):1883-1900. doi: 10.1089/neu.2023.0509. Epub 2024 Apr 29.
6
Machine learning model to predict obesity using gut metabolite and brain microstructure data.
Sci Rep. 2023 Apr 4;13(1):5488. doi: 10.1038/s41598-023-32713-2.
7
Significant Acceleration of Regional Brain Aging and Atrophy After Mild Traumatic Brain Injury.
J Gerontol A Biol Sci Med Sci. 2023 Aug 2;78(8):1328-1338. doi: 10.1093/gerona/glad079.
8
Prenatal heroin exposure alters brain morphology and connectivity in adolescent mice.
NMR Biomed. 2023 Feb;36(2):e4842. doi: 10.1002/nbm.4842. Epub 2022 Nov 23.
9
Regional Neuroanatomic Effects on Brain Age Inferred Using Magnetic Resonance Imaging and Ridge Regression.
J Gerontol A Biol Sci Med Sci. 2023 Jun 1;78(6):872-881. doi: 10.1093/gerona/glac209.
10
mRNA isoform balance in neuronal development and disease.
Wiley Interdiscip Rev RNA. 2023 May-Jun;14(3):e1762. doi: 10.1002/wrna.1762. Epub 2022 Sep 19.

本文引用的文献

1
Patient-tailored connectomics visualization for the assessment of white matter atrophy in traumatic brain injury.
Front Neurol. 2012 Feb 6;3:10. doi: 10.3389/fneur.2012.00010. eCollection 2012.
2
The connectome viewer toolkit: an open source framework to manage, analyze, and visualize connectomes.
Front Neuroinform. 2011 Jun 6;5:3. doi: 10.3389/fninf.2011.00003. eCollection 2011.
3
Understanding complexity in the human brain.
Trends Cogn Sci. 2011 May;15(5):200-9. doi: 10.1016/j.tics.2011.03.006. Epub 2011 Apr 14.
4
BDNF gene effects on brain circuitry replicated in 455 twins.
Neuroimage. 2011 Mar 15;55(2):448-54. doi: 10.1016/j.neuroimage.2010.12.053. Epub 2010 Dec 30.
6
Statistical parametric network analysis of functional connectivity dynamics during a working memory task.
Neuroimage. 2011 Mar 15;55(2):688-704. doi: 10.1016/j.neuroimage.2010.11.030. Epub 2010 Nov 21.
7
Small-world directed networks in the human brain: multivariate Granger causality analysis of resting-state fMRI.
Neuroimage. 2011 Feb 14;54(4):2683-94. doi: 10.1016/j.neuroimage.2010.11.007. Epub 2010 Nov 10.
9
Neuroimaging study designs, computational analyses and data provenance using the LONI pipeline.
PLoS One. 2010 Sep 28;5(9):e13070. doi: 10.1371/journal.pone.0013070.
10
Conserved and variable architecture of human white matter connectivity.
Neuroimage. 2011 Jan 15;54(2):1262-79. doi: 10.1016/j.neuroimage.2010.09.006. Epub 2010 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验