Suppr超能文献

基于磁共振成像和岭回归的脑区神经解剖学对脑龄推断的影响。

Regional Neuroanatomic Effects on Brain Age Inferred Using Magnetic Resonance Imaging and Ridge Regression.

机构信息

Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA.

Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA.

出版信息

J Gerontol A Biol Sci Med Sci. 2023 Jun 1;78(6):872-881. doi: 10.1093/gerona/glac209.

Abstract

The biological age of the brain differs from its chronological age (CA) and can be used as biomarker of neural/cognitive disease processes and as predictor of mortality. Brain age (BA) is often estimated from magnetic resonance images (MRIs) using machine learning (ML) that rarely indicates how regional brain features contribute to BA. Leveraging an aggregate training sample of 3 418 healthy controls (HCs), we describe a ridge regression model that quantifies each region's contribution to BA. After model testing on an independent sample of 651 HCs, we compute the coefficient of partial determination R¯p2 for each regional brain volume to quantify its contribution to BA. Model performance is also evaluated using the correlation r between chronological and biological ages, the mean absolute error (MAE ) and mean squared error (MSE) of BA estimates. On training data, r=0.92, MSE=70.94 years, MAE=6.57 years, and R¯2=0.81; on test data, r=0.90, MSE=81.96 years, MAE=7.00 years, and R¯2=0.79. The regions whose volumes contribute most to BA are the nucleus accumbens (R¯p2=7.27%), inferior temporal gyrus (R¯p2=4.03%), thalamus (R¯p2=3.61%), brainstem (R¯p2=3.29%), posterior lateral sulcus (R¯p2=3.22%), caudate nucleus (R¯p2=3.05%), orbital gyrus (R¯p2=2.96%), and precentral gyrus (R¯p2=2.80%). Our ridge regression, although outperformed by the most sophisticated ML approaches, identifies the importance and relative contribution of each brain structure to overall BA. Aside from its interpretability and quasi-mechanistic insights, our model can be used to validate future ML approaches for BA estimation.

摘要

大脑的生物年龄与实际年龄(CA)不同,可作为神经/认知疾病过程的生物标志物和死亡率的预测因子。大脑年龄(BA)通常是通过机器学习(ML)从磁共振成像(MRI)中估算出来的,但很少能说明区域大脑特征对 BA 的贡献。我们利用一个由 3418 名健康对照(HC)组成的综合训练样本,描述了一种岭回归模型,该模型可以量化每个区域对 BA 的贡献。在对 651 名 HC 的独立样本进行模型测试后,我们计算了每个区域脑容量对 BA 的偏决定系数 R¯p2,以量化其对 BA 的贡献。还通过比较 BA 的实际年龄和生物年龄之间的相关性 r、BA 估计的平均绝对误差(MAE)和平均平方误差(MSE)来评估模型性能。在训练数据上,r=0.92,MSE=70.94 岁,MAE=6.57 岁,R¯2=0.81;在测试数据上,r=0.90,MSE=81.96 岁,MAE=7.00 岁,R¯2=0.79。对 BA 贡献最大的区域是伏隔核(R¯p2=7.27%)、颞下回(R¯p2=4.03%)、丘脑(R¯p2=3.61%)、脑干(R¯p2=3.29%)、外侧裂后回(R¯p2=3.22%)、尾状核(R¯p2=3.05%)、眶回(R¯p2=2.96%)和中央前回(R¯p2=2.80%)。我们的岭回归虽然不如最复杂的 ML 方法表现出色,但它可以确定每个大脑结构对整体 BA 的重要性和相对贡献。除了可解释性和准机械洞察力外,我们的模型还可以用于验证未来 BA 估计的 ML 方法。

相似文献

1
Regional Neuroanatomic Effects on Brain Age Inferred Using Magnetic Resonance Imaging and Ridge Regression.
J Gerontol A Biol Sci Med Sci. 2023 Jun 1;78(6):872-881. doi: 10.1093/gerona/glac209.
4
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.
Cochrane Database Syst Rev. 2018 Jan 22;1(1):CD011551. doi: 10.1002/14651858.CD011551.pub2.
8
Physical interventions to interrupt or reduce the spread of respiratory viruses.
Cochrane Database Syst Rev. 2023 Jan 30;1(1):CD006207. doi: 10.1002/14651858.CD006207.pub6.
10
123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma.
Cochrane Database Syst Rev. 2015 Sep 29;2015(9):CD009263. doi: 10.1002/14651858.CD009263.pub2.

引用本文的文献

2
Deep learning to quantify the pace of brain aging in relation to neurocognitive changes.
Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2413442122. doi: 10.1073/pnas.2413442122. Epub 2025 Feb 24.
3
Anatomic Interpretability in Neuroimage Deep Learning: Saliency Approaches for Typical Aging and Traumatic Brain Injury.
Neuroinformatics. 2024 Oct;22(4):591-606. doi: 10.1007/s12021-024-09694-2. Epub 2024 Nov 6.
5
Decoding MRI-informed brain age using mutual information.
Insights Imaging. 2024 Aug 26;15(1):216. doi: 10.1186/s13244-024-01791-9.
6
Neurobiology of Aging: New Insights From Across the Research Spectrum.
J Gerontol A Biol Sci Med Sci. 2023 Jun 1;78(6):869-871. doi: 10.1093/gerona/glad110.
7
Significant Acceleration of Regional Brain Aging and Atrophy After Mild Traumatic Brain Injury.
J Gerontol A Biol Sci Med Sci. 2023 Aug 2;78(8):1328-1338. doi: 10.1093/gerona/glad079.
8
Anatomically interpretable deep learning of brain age captures domain-specific cognitive impairment.
Proc Natl Acad Sci U S A. 2023 Jan 10;120(2):e2214634120. doi: 10.1073/pnas.2214634120. Epub 2023 Jan 3.

本文引用的文献

2
Local Brain-Age: A U-Net Model.
Front Aging Neurosci. 2021 Dec 13;13:761954. doi: 10.3389/fnagi.2021.761954. eCollection 2021.
3
Microstructural development from 9 to 14 years: Evidence from the ABCD Study.
Dev Cogn Neurosci. 2022 Feb;53:101044. doi: 10.1016/j.dcn.2021.101044. Epub 2021 Dec 3.
4
Machine learning for brain age prediction: Introduction to methods and clinical applications.
EBioMedicine. 2021 Oct;72:103600. doi: 10.1016/j.ebiom.2021.103600. Epub 2021 Oct 4.
5
The ENIGMA Toolbox: multiscale neural contextualization of multisite neuroimaging datasets.
Nat Methods. 2021 Jul;18(7):698-700. doi: 10.1038/s41592-021-01186-4.
6
Brain age prediction: A comparison between machine learning models using region- and voxel-based morphometric data.
Hum Brain Mapp. 2021 Jun 1;42(8):2332-2346. doi: 10.1002/hbm.25368. Epub 2021 Mar 19.
7
Correlation Constraints for Regression Models: Controlling Bias in Brain Age Prediction.
Front Psychiatry. 2021 Feb 18;12:615754. doi: 10.3389/fpsyt.2021.615754. eCollection 2021.
8
Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3-90 years.
Hum Brain Mapp. 2022 Jan;43(1):452-469. doi: 10.1002/hbm.25320. Epub 2021 Feb 11.
9
An MRI-based strategy for differentiation of frontotemporal dementia and Alzheimer's disease.
Alzheimers Res Ther. 2021 Jan 12;13(1):23. doi: 10.1186/s13195-020-00757-5.
10
Julich-Brain: A 3D probabilistic atlas of the human brain's cytoarchitecture.
Science. 2020 Aug 21;369(6506):988-992. doi: 10.1126/science.abb4588. Epub 2020 Jul 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验