Suppr超能文献

与疾病相关的单体亨廷顿蛋白中的聚谷氨酰胺延伸段呈现紧密结构。

Disease-associated polyglutamine stretches in monomeric huntingtin adopt a compact structure.

作者信息

Peters-Libeu Clare, Miller Jason, Rutenber Earl, Newhouse Yvonne, Krishnan Preethi, Cheung Kenneth, Hatters Danny, Brooks Elizabeth, Widjaja Kartika, Tran Tina, Mitra Siddhartha, Arrasate Montserrat, Mosquera Luis A, Taylor Dean, Weisgraber Karl H, Finkbeiner Steven

机构信息

Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.

出版信息

J Mol Biol. 2012 Aug 24;421(4-5):587-600. doi: 10.1016/j.jmb.2012.01.034. Epub 2012 Jan 28.

Abstract

Abnormal polyglutamine (polyQ) tracts are the only common feature in nine proteins that each cause a dominant neurodegenerative disorder. In Huntington's disease, tracts longer than 36 glutamines in the protein huntingtin (htt) cause degeneration. In situ, monoclonal antibody 3B5H10 binds to different htt fragments in neurons in proportion to their toxicity. Here, we determined the structure of 3B5H10 Fab to 1.9 Å resolution by X-ray crystallography. Modeling demonstrates that the paratope forms a groove suitable for binding two β-rich polyQ strands. Using small-angle X-ray scattering, we confirmed that the polyQ epitope recognized by 3B5H10 is a compact two-stranded hairpin within monomeric htt and is abundant in htt fragments unbound to antibody. Thus, disease-associated polyQ stretches preferentially adopt compact conformations. Since 3B5H10 binding predicts degeneration, this compact polyQ structure may be neurotoxic.

摘要

异常的聚谷氨酰胺(polyQ)序列是九种蛋白质中唯一的共同特征,这九种蛋白质各自引发一种显性神经退行性疾病。在亨廷顿舞蹈症中,亨廷顿蛋白(htt)中超过36个谷氨酰胺的序列会导致神经变性。在原位,单克隆抗体3B5H10与神经元中不同的htt片段结合,结合比例与其毒性成正比。在此,我们通过X射线晶体学确定了3B5H10 Fab的结构,分辨率达到1.9 Å。模型显示,互补决定区形成了一个适合结合两条富含β链的polyQ链的凹槽。利用小角X射线散射,我们证实3B5H10识别的polyQ表位是单体htt内紧凑的双链发夹结构,并且在未与抗体结合的htt片段中含量丰富。因此,与疾病相关的polyQ序列优先采用紧凑构象。由于3B5H10的结合预示着神经变性,这种紧凑的polyQ结构可能具有神经毒性。

相似文献

1
Disease-associated polyglutamine stretches in monomeric huntingtin adopt a compact structure.
J Mol Biol. 2012 Aug 24;421(4-5):587-600. doi: 10.1016/j.jmb.2012.01.034. Epub 2012 Jan 28.
2
Anti-PolyQ Antibodies Recognize a Short PolyQ Stretch in Both Normal and Mutant Huntingtin Exon 1.
J Mol Biol. 2015 Jul 31;427(15):2507-2519. doi: 10.1016/j.jmb.2015.05.023. Epub 2015 Jun 3.
3
Monoclonal antibodies recognize distinct conformational epitopes formed by polyglutamine in a mutant huntingtin fragment.
J Biol Chem. 2009 Aug 7;284(32):21647-58. doi: 10.1074/jbc.M109.016923. Epub 2009 Jun 2.
5
Linear and extended: a common polyglutamine conformation recognized by the three antibodies MW1, 1C2 and 3B5H10.
Hum Mol Genet. 2013 Oct 15;22(20):4215-23. doi: 10.1093/hmg/ddt273. Epub 2013 Jun 17.
7
A huntingtin peptide inhibits polyQ-huntingtin associated defects.
PLoS One. 2013 Jul 4;8(7):e68775. doi: 10.1371/journal.pone.0068775. Print 2013.
8
Exploding the Repeat Length Paradigm while Exploring Amyloid Toxicity in Huntington's Disease.
Acc Chem Res. 2020 Oct 20;53(10):2347-2357. doi: 10.1021/acs.accounts.0c00450. Epub 2020 Sep 25.
9
The emerging role of the first 17 amino acids of huntingtin in Huntington's disease.
Biomol Concepts. 2015 Mar;6(1):33-46. doi: 10.1515/bmc-2015-0001.
10
Secondary structures of native and pathogenic huntingtin N-terminal fragments.
J Phys Chem B. 2011 Oct 13;115(40):11597-608. doi: 10.1021/jp206373g. Epub 2011 Sep 21.

引用本文的文献

1
Probing How Anti-huntingtin Antibodies Bind the Fibrillar Fuzzy Coat Using Solid-State NMR.
Chemistry. 2025 Aug 13;31(45):e01676. doi: 10.1002/chem.202501676. Epub 2025 Jul 24.
4
Emerging degrader technologies engaging lysosomal pathways.
Chem Soc Rev. 2022 Oct 31;51(21):8832-8876. doi: 10.1039/d2cs00624c.
8
Phase Transition of Huntingtin: Factors and Pathological Relevance.
Front Genet. 2020 Jul 23;11:754. doi: 10.3389/fgene.2020.00754. eCollection 2020.
9
Detection of misfolded protein aggregates from a clinical perspective.
J Clin Transl Res. 2016 Mar 22;2(1):11-26. eCollection 2016 Apr 15.
10
The folding equilibrium of huntingtin exon 1 monomer depends on its polyglutamine tract.
J Biol Chem. 2018 Dec 21;293(51):19613-19623. doi: 10.1074/jbc.RA118.004808. Epub 2018 Oct 12.

本文引用的文献

1
Slow amyloid nucleation via α-helix-rich oligomeric intermediates in short polyglutamine-containing huntingtin fragments.
J Mol Biol. 2012 Feb 3;415(5):881-99. doi: 10.1016/j.jmb.2011.12.010. Epub 2011 Dec 9.
2
Identifying polyglutamine protein species in situ that best predict neurodegeneration.
Nat Chem Biol. 2011 Oct 30;7(12):925-34. doi: 10.1038/nchembio.694.
3
A compact beta model of huntingtin toxicity.
J Biol Chem. 2011 Mar 11;286(10):8188-8196. doi: 10.1074/jbc.M110.192013. Epub 2011 Jan 5.
4
Secondary structure of Huntingtin amino-terminal region.
Structure. 2009 Sep 9;17(9):1205-12. doi: 10.1016/j.str.2009.08.002.
5
Multi-domain misfolding: understanding the aggregation pathway of polyglutamine proteins.
Protein Eng Des Sel. 2009 Aug;22(8):447-51. doi: 10.1093/protein/gzp033. Epub 2009 Jul 9.
6
Single homopolypeptide chains collapse into mechanically rigid conformations.
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12605-10. doi: 10.1073/pnas.0900678106. Epub 2009 Jun 19.
7
Monoclonal antibodies recognize distinct conformational epitopes formed by polyglutamine in a mutant huntingtin fragment.
J Biol Chem. 2009 Aug 7;284(32):21647-58. doi: 10.1074/jbc.M109.016923. Epub 2009 Jun 2.
8
Distinct conformations of in vitro and in vivo amyloids of huntingtin-exon1 show different cytotoxicity.
Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9679-84. doi: 10.1073/pnas.0812083106. Epub 2009 Jun 1.
9
Polyglutamine neurodegeneration: protein misfolding revisited.
Trends Neurosci. 2008 Oct;31(10):521-8. doi: 10.1016/j.tins.2008.07.004. Epub 2008 Sep 6.
10
Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution.
Science. 2008 Jun 13;320(5882):1471-5. doi: 10.1126/science.1157092.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验