Suppr超能文献

丙酮酸在豌豆类菌体中有两条合成途径,其固氮效率不同。

Pyruvate is synthesized by two pathways in pea bacteroids with different efficiencies for nitrogen fixation.

机构信息

Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, United Kingdom.

出版信息

J Bacteriol. 2010 Oct;192(19):4944-53. doi: 10.1128/JB.00294-10. Epub 2010 Jul 30.

Abstract

Nitrogen fixation in legume bacteroids is energized by the metabolism of dicarboxylic acids, which requires their oxidation to both oxaloacetate and pyruvate. In alfalfa bacteroids, production of pyruvate requires NAD+ malic enzyme (Dme) but not NADP+ malic enzyme (Tme). However, we show that Rhizobium leguminosarum has two pathways for pyruvate formation from dicarboxylates catalyzed by Dme and by the combined activities of phosphoenolpyruvate (PEP) carboxykinase (PckA) and pyruvate kinase (PykA). Both pathways enable N2 fixation, but the PckA/PykA pathway supports N2 fixation at only 60% of that for Dme. Double mutants of dme and pckA/pykA did not fix N2. Furthermore, dme pykA double mutants did not grow on dicarboxylates, showing that they are the only pathways for the production of pyruvate from dicarboxylates normally expressed. PckA is not expressed in alfalfa bacteroids, resulting in an obligate requirement for Dme for pyruvate formation and N2 fixation. When PckA was expressed from a constitutive nptII promoter in alfalfa dme bacteroids, acetylene was reduced at 30% of the wild-type rate, although this level was insufficient to prevent nitrogen starvation. Dme has N-terminal, malic enzyme (Me), and C-terminal phosphotransacetylase (Pta) domains. Deleting the Pta domain increased the peak acetylene reduction rate in 4-week-old pea plants to 140 to 150% of the wild-type rate, and this was accompanied by increased nodule mass. Plants infected with Pta deletion mutants did not have increased dry weight, demonstrating that there is not a sustained change in nitrogen fixation throughout growth. This indicates a complex relationship between pyruvate synthesis in bacteroids, nitrogen fixation, and plant growth.

摘要

豆科植物根瘤菌中的固氮作用由二羧酸的代谢提供能量,这需要将其氧化为草酰乙酸和丙酮酸。在紫花苜蓿根瘤菌中,丙酮酸的产生需要 NAD+苹果酸酶(Dme)但不需要 NADP+苹果酸酶(Tme)。然而,我们表明,根瘤菌属具有两种从二羧酸催化生成丙酮酸的途径,分别由 Dme 和磷酸烯醇丙酮酸(PEP)羧激酶(PckA)和丙酮酸激酶(PykA)的联合活性催化。这两种途径都能支持固氮作用,但 PckA/PykA 途径的固氮作用仅为 Dme 的 60%。dme 和 pckA/pykA 的双突变体不能固定 N2。此外,dme pykA 双突变体不能在二羧酸上生长,表明它们是正常表达的从二羧酸生成丙酮酸的唯一途径。PckA 不在紫花苜蓿根瘤菌中表达,导致 Dme 是生成丙酮酸和固氮作用所必需的。当 PckA 由组成型 nptII 启动子在紫花苜蓿 dme 根瘤菌中表达时,乙炔的还原率为野生型的 30%,尽管这一水平不足以防止氮饥饿。Dme 具有 N 端、苹果酸酶(Me)和 C 端磷酸转乙酰酶(Pta)结构域。删除 Pta 结构域可将 4 周龄豌豆植物的峰值乙炔还原率提高到野生型的 140%至 150%,同时根瘤质量也增加。感染 Pta 缺失突变体的植物没有增加干重,这表明在整个生长过程中固氮作用没有持续变化。这表明了根瘤菌中丙酮酸合成、固氮作用和植物生长之间的复杂关系。

相似文献

4
Lipogenesis and Redox Balance in Nitrogen-Fixing Pea Bacteroids.固氮豌豆类菌体中的脂肪生成与氧化还原平衡
J Bacteriol. 2016 Sep 22;198(20):2864-75. doi: 10.1128/JB.00451-16. Print 2016 Oct 15.

引用本文的文献

6
How Rhizobia Adapt to the Nodule Environment.根瘤菌如何适应根瘤环境。
J Bacteriol. 2021 May 20;203(12):e0053920. doi: 10.1128/JB.00539-20. Epub 2021 Feb 1.
7
Lifestyle adaptations of from rhizosphere to symbiosis.从根际到共生, 生活方式的适应。
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23823-23834. doi: 10.1073/pnas.2009094117. Epub 2020 Sep 8.

本文引用的文献

3
Coordinating nodule morphogenesis with rhizobial infection in legumes.协调豆科植物根瘤形态发生与根瘤菌感染
Annu Rev Plant Biol. 2008;59:519-46. doi: 10.1146/annurev.arplant.59.032607.092839.
4
Nutrient sharing between symbionts.共生体之间的营养共享。
Plant Physiol. 2007 Jun;144(2):604-14. doi: 10.1104/pp.107.097741.
10
Metabolic changes of rhizobia in legume nodules.豆科植物根瘤中根瘤菌的代谢变化。
Trends Microbiol. 2006 Apr;14(4):161-8. doi: 10.1016/j.tim.2006.02.005. Epub 2006 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验