Suppr超能文献

锰结合细菌反应中心驱动超氧根离子光解产生氧气。

Light-driven oxygen production from superoxide by Mn-binding bacterial reaction centers.

机构信息

Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2314-8. doi: 10.1073/pnas.1115364109. Epub 2012 Jan 30.

Abstract

One of the outstanding questions concerning the early Earth is how ancient phototrophs made the evolutionary transition from anoxygenic to oxygenic photosynthesis, which resulted in a substantial increase in the amount of oxygen in the atmosphere. We have previously demonstrated that reaction centers from anoxygenic photosynthetic bacteria can be modified to bind a redox-active Mn cofactor, thus gaining a key functional feature of photosystem II, which contains the site for water oxidation in cyanobacteria, algae, and plants [Thielges M, et al. (2005) Biochemistry 44:7389-7394]. In this paper, the Mn-binding reaction centers are shown to have a light-driven enzymatic function; namely, the ability to convert superoxide into molecular oxygen. This activity has a relatively high efficiency with a k(cat) of approximately 1 s(-1) that is significantly larger than typically observed for designed enzymes, and a K(m) of 35-40 μM that is comparable to the value of 50 μM for Mn-superoxide dismutase, which catalyzes a similar reaction. Unlike wild-type reaction centers, the highly oxidizing reaction centers are not stable in the light unless they have a bound Mn. The stability and enzymatic ability of this type of Mn-binding reaction centers would have provided primitive phototrophs with an environmental advantage before the evolution of organisms with a more complex Mn(4)Ca cluster needed to perform the multielectron reactions required to oxidize water.

摘要

早期地球的一个突出问题是,古老的光养生物如何从无氧光合作用进化到有氧光合作用,这导致大气中氧气含量大幅增加。我们之前已经证明,来自无氧光合作用细菌的反应中心可以被修饰以结合氧化还原活性的 Mn 辅助因子,从而获得光合作用系统 II 的关键功能特征,该系统包含蓝藻、藻类和植物中进行水氧化的位点[Thielges M, 等人。(2005)生物化学 44:7389-7394]。在本文中,展示了 Mn 结合反应中心具有光驱动的酶功能;即,将超氧化物转化为分子氧的能力。这种活性具有相对较高的效率,k(cat)约为 1 s(-1),明显大于通常观察到的设计酶,而 K(m)为 35-40 μM,与 Mn 超氧化物歧化酶的 50 μM 值相当,后者催化类似的反应。与野生型反应中心不同,除非它们有结合的 Mn,否则高度氧化的反应中心在光照下不稳定。在进化出更复杂的需要进行多电子反应以氧化水的 Mn(4)Ca 簇的生物体之前,这种类型的 Mn 结合反应中心的稳定性和酶活性将为原始光养生物提供环境优势。

相似文献

引用本文的文献

2
Time-resolved comparative molecular evolution of oxygenic photosynthesis.光合放氧的时间分辨比较分子进化
Biochim Biophys Acta Bioenerg. 2021 Jun 1;1862(6):148400. doi: 10.1016/j.bbabio.2021.148400. Epub 2021 Feb 19.
6
The three-dimensional structures of bacterial reaction centers.细菌反应中心的三维结构。
Photosynth Res. 2014 May;120(1-2):87-98. doi: 10.1007/s11120-013-9821-6. Epub 2013 Apr 11.

本文引用的文献

2
Evolution of photosynthesis.光合作用的进化。
Annu Rev Plant Biol. 2011;62:515-48. doi: 10.1146/annurev-arplant-042110-103811.
5
The evolution of Photosystem II: insights into the past and future.光系统 II 的进化:对过去和未来的洞察。
Photosynth Res. 2011 Jan;107(1):71-86. doi: 10.1007/s11120-010-9559-3. Epub 2010 May 29.
7
9
The structural biochemistry of the superoxide dismutases.超氧化物歧化酶的结构生物化学
Biochim Biophys Acta. 2010 Feb;1804(2):245-62. doi: 10.1016/j.bbapap.2009.11.004. Epub 2009 Nov 13.
10
Design of functional metalloproteins.功能性金属蛋白的设计
Nature. 2009 Aug 13;460(7257):855-62. doi: 10.1038/nature08304.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验