Suppr超能文献

通过定量靶向蛋白质组学进行蛋白质降解的全局动力学分析。

Global kinetic analysis of proteolysis via quantitative targeted proteomics.

机构信息

Department of Pharmaceutical Chemistry, University of California, San Francisco, 1700 4th Street, San Francisco, CA 94114, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):1913-8. doi: 10.1073/pnas.1117158109. Epub 2012 Jan 23.

Abstract

Mass spectrometry-based proteomics is a powerful tool for identifying hundreds to thousands of posttranslational modifications in complex mixtures. However, it remains enormously challenging to simultaneously assess the intrinsic catalytic efficiencies (k(cat)/K(M)) of these modifications in the context of their natural interactors. Such fundamental enzymological constants are key to determining substrate specificity and for establishing the timing and importance of cellular signaling. Here, we report the use of selected reaction monitoring (SRM) for tracking proteolysis induced by human apoptotic caspases-3, -7, -8, and -9 in lysates and living cells. By following the appearance of the cleaved peptides in lysate as a function of time, we were able to determine hundreds of catalytic efficiencies in parallel. Remarkably, we find the rates of substrate hydrolysis for individual caspases vary greater than 500-fold indicating a sequential process. Moreover, the rank-order of substrate cutting is similar in apoptotic cells, suggesting that cellular structures do not dramatically alter substrate accessibility. Comparisons of extrinsic (TRAIL) and intrinsic (staurosporine) inducers of apoptosis revealed similar substrate profiles, suggesting the final proteolytic demolitions proceed by similarly ordered plans. Certain biological processes were rapidly targeted by the caspases, including multiple components of the endocyotic pathway and miRNA processing machinery. We believe this massively parallel and quantitative label-free approach to obtaining basic enzymological constants will facilitate the study of proteolysis and other posttranslational modifications in complex mixtures.

摘要

基于质谱的蛋白质组学是一种强大的工具,可用于鉴定复杂混合物中数百到数千种翻译后修饰。然而,要同时评估这些修饰物在其自然相互作用体中的内在催化效率(kcat/KM)仍然极具挑战性。这些基本的酶学常数是确定底物特异性和建立细胞信号转导时间和重要性的关键。在这里,我们报告了使用选择反应监测(SRM)来跟踪人凋亡半胱天冬酶-3、-7、-8 和 -9 在裂解物和活细胞中诱导的蛋白水解。通过跟踪裂解物中切割肽的出现随时间的变化,我们能够同时平行确定数百种催化效率。值得注意的是,我们发现单个半胱天冬酶的底物水解速率变化超过 500 倍,表明这是一个顺序过程。此外,凋亡细胞中底物切割的排序相似,表明细胞结构不会显著改变底物的可及性。凋亡的外在(TRAIL)和内在(staurosporine)诱导物的比较显示出相似的底物谱,表明最终的蛋白水解破坏是通过类似有序的计划进行的。某些生物学过程很快被半胱天冬酶靶向,包括内吞途径和 miRNA 处理机制的多个成分。我们相信,这种大规模并行和定量的无标记方法来获得基本的酶学常数将有助于研究复杂混合物中的蛋白水解和其他翻译后修饰。

相似文献

2
Inflammatory stimuli regulate caspase substrate profiles.炎性刺激调节半胱氨酸天冬氨酸蛋白酶底物谱。
Mol Cell Proteomics. 2010 May;9(5):880-93. doi: 10.1074/mcp.M900528-MCP200. Epub 2010 Feb 20.
8
Caspases and their substrates.半胱天冬酶及其底物。
Cell Death Differ. 2017 Aug;24(8):1380-1389. doi: 10.1038/cdd.2017.44. Epub 2017 May 12.

引用本文的文献

4
Inflammatory caspase substrate specificities.炎症性半胱天冬酶底物特异性。
mBio. 2024 Jul 17;15(7):e0297523. doi: 10.1128/mbio.02975-23. Epub 2024 Jun 5.
5
N-Terminomic Identification of Intracellular MMP-2 Substrates in Cardiac Tissue.N-端肽组学鉴定心肌组织细胞内 MMP-2 的底物。
J Proteome Res. 2024 Oct 4;23(10):4188-4202. doi: 10.1021/acs.jproteome.3c00755. Epub 2024 Apr 22.

本文引用的文献

1
Caspase substrates and cellular remodeling.半胱天冬酶底物与细胞重塑。
Annu Rev Biochem. 2011;80:1055-87. doi: 10.1146/annurev-biochem-061809-121639.
4
Inflammatory stimuli regulate caspase substrate profiles.炎性刺激调节半胱氨酸天冬氨酸蛋白酶底物谱。
Mol Cell Proteomics. 2010 May;9(5):880-93. doi: 10.1074/mcp.M900528-MCP200. Epub 2010 Feb 20.
5
Sampling the N-terminal proteome of human blood.人类血液 N 端蛋白质组采样。
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4561-6. doi: 10.1073/pnas.0914495107. Epub 2010 Feb 19.
8
Structural and kinetic determinants of protease substrates.蛋白酶底物的结构和动力学决定因素。
Nat Struct Mol Biol. 2009 Oct;16(10):1101-8. doi: 10.1038/nsmb.1668. Epub 2009 Sep 20.
9
Methods for the proteomic identification of protease substrates.蛋白酶底物的蛋白质组学鉴定方法。
Curr Opin Chem Biol. 2009 Dec;13(5-6):503-9. doi: 10.1016/j.cbpa.2009.07.026. Epub 2009 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验