Department of Pharmaceutical Chemistry, University of California, San Francisco, 1700 4th Street, San Francisco, CA 94114, USA.
Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):1913-8. doi: 10.1073/pnas.1117158109. Epub 2012 Jan 23.
Mass spectrometry-based proteomics is a powerful tool for identifying hundreds to thousands of posttranslational modifications in complex mixtures. However, it remains enormously challenging to simultaneously assess the intrinsic catalytic efficiencies (k(cat)/K(M)) of these modifications in the context of their natural interactors. Such fundamental enzymological constants are key to determining substrate specificity and for establishing the timing and importance of cellular signaling. Here, we report the use of selected reaction monitoring (SRM) for tracking proteolysis induced by human apoptotic caspases-3, -7, -8, and -9 in lysates and living cells. By following the appearance of the cleaved peptides in lysate as a function of time, we were able to determine hundreds of catalytic efficiencies in parallel. Remarkably, we find the rates of substrate hydrolysis for individual caspases vary greater than 500-fold indicating a sequential process. Moreover, the rank-order of substrate cutting is similar in apoptotic cells, suggesting that cellular structures do not dramatically alter substrate accessibility. Comparisons of extrinsic (TRAIL) and intrinsic (staurosporine) inducers of apoptosis revealed similar substrate profiles, suggesting the final proteolytic demolitions proceed by similarly ordered plans. Certain biological processes were rapidly targeted by the caspases, including multiple components of the endocyotic pathway and miRNA processing machinery. We believe this massively parallel and quantitative label-free approach to obtaining basic enzymological constants will facilitate the study of proteolysis and other posttranslational modifications in complex mixtures.
基于质谱的蛋白质组学是一种强大的工具,可用于鉴定复杂混合物中数百到数千种翻译后修饰。然而,要同时评估这些修饰物在其自然相互作用体中的内在催化效率(kcat/KM)仍然极具挑战性。这些基本的酶学常数是确定底物特异性和建立细胞信号转导时间和重要性的关键。在这里,我们报告了使用选择反应监测(SRM)来跟踪人凋亡半胱天冬酶-3、-7、-8 和 -9 在裂解物和活细胞中诱导的蛋白水解。通过跟踪裂解物中切割肽的出现随时间的变化,我们能够同时平行确定数百种催化效率。值得注意的是,我们发现单个半胱天冬酶的底物水解速率变化超过 500 倍,表明这是一个顺序过程。此外,凋亡细胞中底物切割的排序相似,表明细胞结构不会显著改变底物的可及性。凋亡的外在(TRAIL)和内在(staurosporine)诱导物的比较显示出相似的底物谱,表明最终的蛋白水解破坏是通过类似有序的计划进行的。某些生物学过程很快被半胱天冬酶靶向,包括内吞途径和 miRNA 处理机制的多个成分。我们相信,这种大规模并行和定量的无标记方法来获得基本的酶学常数将有助于研究复杂混合物中的蛋白水解和其他翻译后修饰。