Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142, Japan.
J Physiol. 2012 Apr 1;590(7):1615-24. doi: 10.1113/jphysiol.2011.222687. Epub 2012 Feb 6.
The parafacial respiratory group (pFRG) in the rostral ventrolateral medulla of the newborn rat is predominantly composed of pre-inspiratory (Pre-I) neurons and is involved in respiratory rhythm generation. The subgroup located close to the ventral surface (at least partially overlapping the retrotrapezoid nucleus, RTN) expresses the Phox2b transcription factor and responds to hypercapnic stimulation with strong depolarization, which suggests it has a role in central chemoreception. Although a CO(2) response of pFRG/RTN neurons has been confirmed in the presence of tetrodotoxin (TTX), it is unknown whether the depolarization involved in this response is induced by a direct postsynaptic response of pFRG/RTN neurons or by any presynaptic components mediated by Ca(2+)-dependent mechanisms. In this study, we examined the effects of ATP or substance P receptor antagonists on hypercapnic responses of rostral pFRG/RTN neurons. We tested effects of Cd(2+) and low Ca(2+)-high Mg(2+) in the presence of TTX. The experiments were performed in in vitro brainstem–spinal cord preparations from newborn rats in which Pre-I neurons reflect the discharge pattern of the pFRG. We found that ATP receptor and substance P receptor antagonists do not block membrane potential responses to hypercapnic stimulation (2%→8%) of pFRG/RTN neurons in the rostral parafacial region.Moreover, rostral pFRG/RTN neurons were depolarized by hypercapnia under conditions where the contribution of presynaptic components was inhibited in the presence of TTX and Cd(2+) or in a low Ca(2+)-high Mg(2+) solution containing TTX and Cd(2+). All cases (except some cases in a low Ca(2+)-high Mg(2+) solution) of membrane depolarization by hypercapnic stimulation were accompanied with an increase in input resistance. These neurons were predominantly Phox2b immunoreactive. Our findings suggest that the response of pFRG/RTN neurons to hypercapnia is induced by direct action on the postsynaptic membrane via closing of K(+) channels.
延髓头端腹外侧区的口面呼吸组(pFRG)主要由预吸气(Pre-I)神经元组成,参与呼吸节律的产生。位于腹侧表面附近的亚组(至少部分与梯形核重叠,RTN)表达 Phox2b 转录因子,并对高碳酸刺激产生强烈去极化反应,提示其在中枢化学感受中起作用。尽管已经在存在河豚毒素(TTX)的情况下证实了 pFRG/RTN 神经元对 CO2 的反应,但尚不清楚这种反应中涉及的去极化是由 pFRG/RTN 神经元的直接突触后反应引起的,还是由任何通过 Ca2+依赖性机制介导的突触前成分引起的。在这项研究中,我们研究了 ATP 或 P 物质受体拮抗剂对延髓头端 pFRG/RTN 神经元高碳酸反应的影响。我们测试了 TTX 存在下 Cd2+和低 Ca2+-高 Mg2+的影响。该实验在体外脑-脊髓标本中进行,其中 Pre-I 神经元反映了 pFRG 的放电模式。我们发现,ATP 受体和 P 物质受体拮抗剂不能阻断 pFRG/RTN 神经元对高碳酸刺激(2%→8%)的膜电位反应延髓头端口面呼吸区。此外,在 TTX 和 Cd2+存在下,或在包含 TTX 和 Cd2+的低 Ca2+-高 Mg2+溶液中,抑制了突触前成分的贡献的情况下,高碳酸血症可使 pFRG/RTN 神经元去极化。除了在低 Ca2+-高 Mg2+溶液中的某些情况下,高碳酸刺激引起的膜去极化的所有情况(除了在低 Ca2+-高 Mg2+溶液中的某些情况)都伴随着输入电阻的增加。这些神经元主要是 Phox2b 免疫反应性的。我们的发现表明,pFRG/RTN 神经元对高碳酸的反应是通过关闭 K+通道直接作用于突触后膜而引起的。