Institut für Biophysik, Johannes Kepler Universität, 4020 Linz, Austria.
J Biol Chem. 2012 Mar 30;287(14):11011-7. doi: 10.1074/jbc.M112.339283. Epub 2012 Feb 7.
Lipid bilayers and biological membranes are freely permeable to CO(2), and yet partial CO(2) pressure in the urine is 3-4-fold higher than in blood. We hypothesized that the responsible permeability barrier to CO(2) resides in the umbrella cell apical membrane of the bladder with its dense array of uroplakin complexes. We found that disrupting the uroplakin layer of the urothelium resulted in water and urea permeabilities (P) that were 7- to 8-fold higher than in wild type mice with intact urothelium. However, these interventions had no impact on bladder P(CO2) (∼1.6 × 10(-4) cm/s). To test whether the observed permeability barrier to CO(2) was due to an unstirred layer effect or due to kinetics of CO(2) hydration, we first measured the carbonic anhydrase (CA) activity of the bladder epithelium. Finding none, we reduced the experimental system to an epithelial monolayer, Madin-Darby canine kidney cells. With CA present inside and outside the cells, we showed that P(CO2) was unstirred layer limited (∼7 × 10(-3) cm/s). However, in the total absence of CA activity P(CO2) decreased 14-fold (∼ 5.1 × 10(-4) cm/s), indicating that now CO(2) transport is limited by the kinetics of CO(2) hydration. Expression of aquaporin-1 did not alter P(CO2) (and thus the limiting transport step), which confirmed the conclusion that in the urinary bladder, low P(CO2) is due to the lack of CA. The observed dependence of P(CO2) on CA activity suggests that the tightness of biological membranes to CO(2) may uniquely be regulated via CA expression.
脂质双层和生物膜对 CO(2) 具有自由通透性,但尿液中的 CO(2) 分压比血液高 3-4 倍。我们假设,膀胱伞状细胞顶膜上的 uroplakin 复合物致密排列,是 CO(2) 通透性的主要屏障。我们发现,破坏尿路上皮的 uroplakin 层会导致水和尿素的通透性(P)比完整 urothelium 的野生型小鼠高 7-8 倍。然而,这些干预措施对膀胱 P(CO2)(∼1.6 × 10(-4) cm/s)没有影响。为了测试观察到的 CO(2) 通透性屏障是否是由于未搅动层效应或由于 CO(2) 水合动力学所致,我们首先测量了膀胱上皮的碳酸酐酶(CA)活性。发现没有,我们将实验系统简化为单层上皮,MDCK 细胞。当 CA 存在于细胞内外时,我们表明 P(CO2) 受未搅动层限制(∼7 × 10(-3) cm/s)。然而,在完全没有 CA 活性的情况下,P(CO2) 降低了 14 倍(∼ 5.1 × 10(-4) cm/s),这表明现在 CO(2) 转运受到 CO(2) 水合动力学的限制。水通道蛋白-1 的表达并没有改变 P(CO2)(因此限制了转运步骤),这证实了在膀胱中,低 P(CO2) 是由于缺乏 CA。观察到的 P(CO2) 对 CA 活性的依赖性表明,生物膜对 CO(2) 的紧密性可能通过 CA 表达来独特地调节。