Martin John H
Department of Physiology, Pharmacology, and Neuroscience, City College of the City University of New York, NY 10031, USA.
Clin Neurol Neurosurg. 2012 Jun;114(5):515-23. doi: 10.1016/j.clineuro.2012.01.011. Epub 2012 Feb 6.
Restoring movement control after central nervous system injury requires reconnecting the brain and spinal motoneurons, and doing so with sufficient precision and strength to enable robust voluntary muscle recruitment. Whereas the connection between the upper motoneuron in motor cortex and alpha-motoneurons was thought to be the only important connection for normal motor function in humans, we know that a multiplicity of motor circuits are recruited during normal motor control. Multiplicity of functionally important motor circuits points to the myriad possibilities of intervention that restorative neurology can turn to for repairing motor systems connections to recover movement control after injury. New motor systems repair strategies in animal models and humans are tapping into distributed motor control functions of the spinal cord; neural activity-based approaches, especially for corticospinal tract repair; and circuit-selective activation approaches. I focus on studies harnessing activity-based therapeutic approaches to promote sprouting of spared corticospinal tract axons after injury and redirecting potentially maladaptive plasticity. I discuss that we can see on the near horizon, many different strategies for repairing motor systems connections after injury.
恢复中枢神经系统损伤后的运动控制需要重新连接大脑和脊髓运动神经元,并且要以足够的精度和强度进行连接,以实现有力的自主肌肉募集。虽然运动皮层中的上运动神经元与α运动神经元之间的连接曾被认为是人类正常运动功能的唯一重要连接,但我们现在知道,正常运动控制过程中会募集多种运动回路。功能重要的运动回路的多样性表明,恢复性神经学在修复运动系统连接以恢复损伤后的运动控制方面有无数种可能的干预方式。动物模型和人类中的新运动系统修复策略正在利用脊髓的分布式运动控制功能;基于神经活动的方法,特别是用于皮质脊髓束修复的方法;以及回路选择性激活方法。我重点关注利用基于活动的治疗方法促进损伤后 spared 皮质脊髓束轴突发芽并重新引导潜在适应不良可塑性的研究。我讨论了在不久的将来,我们可以看到许多不同的损伤后修复运动系统连接的策略。