Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León, México.
Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México.
J Biomed Opt. 2022 May;27(5). doi: 10.1117/1.JBO.27.5.056003.
There is a scarcity of published research on the potential role of thermal imaging in the remote detection of respiratory issues due to coronavirus disease-19 (COVID-19). This is a comprehensive study that explores the potential of this imaging technology resulting from its convenient aspects that make it highly accessible: it is contactless, noninvasive, and devoid of harmful radiation effects, and it does not require a complicated installation process.
We aim to investigate the role of thermal imaging, specifically thermal video, for the identification of SARS-CoV-2-infected people using infrared technology and to explore the role of breathing patterns in different parts of the thorax for the identification of possible COVID-19 infection.
We used signal moment, signal texture, and shape moment features extracted from five different body regions of interest (whole upper body, chest, face, back, and side) of images obtained from thermal video clips in which optical flow and super-resolution were used. These features were classified into positive and negative COVID-19 using machine learning strategies.
COVID-19 detection for male models [receiver operating characteristic (ROC) area under the ROC curve (AUC) = 0.605 95% confidence intervals (CI) 0.58 to 0.64] is more reliable than for female models (ROC AUC = 0.577 95% CI 0.55 to 0.61). Overall, thermal imaging is not very sensitive nor specific in detecting COVID-19; the metrics were below 60% except for the chest view from males.
We conclude that, although it may be possible to remotely identify some individuals affected by COVID-19, at this time, the diagnostic performance of current methods for body thermal imaging is not good enough to be used as a mass screening tool.
由于 COVID-19,有关热成像在远程检测呼吸问题方面的潜在作用的研究很少。这是一项全面的研究,探索了这种成像技术的潜力,因为它具有方便的方面,使其具有高度的可及性:它是非接触式、非侵入性的,没有有害的辐射影响,也不需要复杂的安装过程。
我们旨在调查热成像(特别是热视频)在使用红外技术识别 SARS-CoV-2 感染人群方面的作用,并探索不同胸腔部位呼吸模式在识别可能的 COVID-19 感染方面的作用。
我们使用了从热视频剪辑中获得的图像的五个不同感兴趣区域(整个上半身、胸部、面部、背部和侧面)中提取的信号矩、信号纹理和形状矩特征,这些特征使用光流和超分辨率进行了分类。这些特征使用机器学习策略分为 COVID-19 阳性和阴性。
男性模型的 COVID-19 检测(ROC 曲线下的 AUC)[605 95%置信区间(CI)0.58 至 0.64]比女性模型(ROC AUC=0.577 95% CI 0.55 至 0.61)更可靠。总体而言,热成像在检测 COVID-19 方面的灵敏度和特异性都不是很高;除了男性的胸部视图外,指标均低于 60%。
我们得出的结论是,虽然有可能远程识别出一些受 COVID-19 影响的个体,但目前,身体热成像的当前方法的诊断性能还不够好,无法用作大规模筛查工具。