Suppr超能文献

基于深度卷积神经网络特征的新型混合方法用于检测膝关节骨关节炎。

A Novel Hybrid Approach Based on Deep CNN Features to Detect Knee Osteoarthritis.

机构信息

Department of Computer Science, University of Engineering and Technology Taxila, Punjab 47050, Pakistan.

Department of Computer Science, COMSATS University Islamabad-Wah Campus, Wah Cantt 47040, Pakistan.

出版信息

Sensors (Basel). 2021 Sep 15;21(18):6189. doi: 10.3390/s21186189.

Abstract

In the recent era, various diseases have severely affected the lifestyle of individuals, especially adults. Among these, bone diseases, including Knee Osteoarthritis (KOA), have a great impact on quality of life. KOA is a knee joint problem mainly produced due to decreased Articular Cartilage between femur and tibia bones, producing severe joint pain, effusion, joint movement constraints and gait anomalies. To address these issues, this study presents a novel KOA detection at early stages using deep learning-based feature extraction and classification. Firstly, the input X-ray images are preprocessed, and then the Region of Interest (ROI) is extracted through segmentation. Secondly, features are extracted from preprocessed X-ray images containing knee joint space width using hybrid feature descriptors such as Convolutional Neural Network (CNN) through Local Binary Patterns (LBP) and CNN using Histogram of oriented gradient (HOG). Low-level features are computed by HOG, while texture features are computed employing the LBP descriptor. Lastly, multi-class classifiers, that is, Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbour (KNN), are used for the classification of KOA according to the Kellgren-Lawrence (KL) system. The Kellgren-Lawrence system consists of Grade I, Grade II, Grade III, and Grade IV. Experimental evaluation is performed on various combinations of the proposed framework. The experimental results show that the HOG features descriptor provides approximately 97% accuracy for the early detection and classification of KOA for all four grades of KL.

摘要

在当今时代,各种疾病严重影响了个人的生活方式,尤其是成年人。其中,骨骼疾病,包括膝骨关节炎(Knee Osteoarthritis,KOA),对生活质量有很大影响。KOA 是一种膝关节问题,主要是由于股骨和胫骨之间的关节软骨减少而产生的,会导致严重的关节疼痛、积液、关节活动受限和步态异常。为了解决这些问题,本研究提出了一种使用基于深度学习的特征提取和分类的早期 KOA 检测方法。首先,对输入的 X 射线图像进行预处理,然后通过分割提取感兴趣区域(Region of Interest,ROI)。其次,从包含膝关节间隙宽度的预处理 X 射线图像中提取特征,使用混合特征描述符,如卷积神经网络(Convolutional Neural Network,CNN)和局部二值模式(Local Binary Patterns,LBP)和 CNN 使用方向梯度直方图(Histogram of oriented gradient,HOG)。HOG 计算低水平特征,LBP 描述符计算纹理特征。最后,使用多类分类器,即支持向量机(Support Vector Machine,SVM)、随机森林(Random Forest,RF)和 K-最近邻(K-Nearest Neighbour,KNN),根据 Kellgren-Lawrence(KL)系统对 KOA 进行分类。Kellgren-Lawrence 系统包括 I 级、II 级、III 级和 IV 级。在提出的框架的各种组合上进行了实验评估。实验结果表明,HOG 特征描述符在 KL 的所有四个等级中对 KOA 的早期检测和分类提供了约 97%的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22e/8471198/b363c62c7caf/sensors-21-06189-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验