Suppr超能文献

生物细胞和组织的傅里叶变换红外显微镜:使用共振 Mie 散射 (RMieS) EMSC 算法进行数据分析。

FTIR microscopy of biological cells and tissue: data analysis using resonant Mie scattering (RMieS) EMSC algorithm.

机构信息

Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.

出版信息

Analyst. 2012 Mar 21;137(6):1370-7. doi: 10.1039/c2an16088a. Epub 2012 Feb 9.

Abstract

Transmission and transflection infrared microscopy of biological cells and tissue suffer from significant baseline distortions due to scattering effects, predominantly resonant Mie scattering (RMieS). This scattering can also distort peak shapes and apparent peak positions making interpretation difficult and often unreliable. A correction algorithm, the resonant Mie scattering extended multiplicative signal correction (RMieS-EMSC), has been developed that can be used to remove these distortions. The correction algorithm has two key user defined parameters that influence the accuracy of the correction. The first is the number of iterations used to obtain the best outcome. The second is the choice of the initial reference spectrum required for the fitting procedure. The choice of these parameters influences computational time. This is not a major concern when correcting individual spectra or small data sets of a few hundred spectra but becomes much more significant when correcting spectra from infrared images obtained using large focal plane array detectors which may contain tens of thousands of spectra. In this paper we show that, classification of images from tissue can be achieved easily with a few (<10) iterations but a reliable interpretation of the biochemical differences between classes could require more iterations. Regarding the choice of reference spectrum, it is apparent that the more similar it is to the pure absorption spectrum of the sample, the fewer iterations required to obtain an accurate corrected spectrum. Importantly however, we show that using three different non-ideal reference spectra, the same unique correction solution can be obtained.

摘要

生物细胞和组织的透射和反射红外显微镜由于散射效应,主要是共振 Mie 散射(RMieS),会受到显著的基线扭曲。这种散射还会扭曲峰形和表观峰位,使得解释变得困难且通常不可靠。已经开发出一种校正算法,即共振 Mie 散射扩展乘性信号校正(RMieS-EMSC),可用于消除这些扭曲。校正算法有两个关键的用户定义参数,它们会影响校正的准确性。第一个是获得最佳结果所用的迭代次数。第二个是拟合过程所需的初始参考光谱的选择。这些参数的选择会影响计算时间。在单独校正单个光谱或几百个光谱的小数据集时,这并不是一个主要问题,但在使用可能包含数千个光谱的大焦平面阵列探测器校正来自红外图像的光谱时,这会变得更加重要。在本文中,我们表明,使用少数(<10)次迭代即可轻松对组织图像进行分类,但要可靠地解释不同类别之间的生化差异,则可能需要更多的迭代次数。关于参考光谱的选择,显然,它与样品的纯吸收光谱越相似,就需要更少的迭代次数来获得准确的校正光谱。然而,重要的是,我们表明,使用三个不同的非理想参考光谱,可以获得相同的唯一校正解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验