Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3422-7. doi: 10.1073/pnas.1112633109. Epub 2012 Feb 7.
The unprecedented genetic diversity found at vertebrate MHC (major histocompatibility complex) loci influences susceptibility to most infectious and autoimmune diseases. The evolutionary explanation for how these polymorphisms are maintained has been controversial. One leading explanation, antagonistic coevolution (also known as the Red Queen), postulates a never-ending molecular arms race where pathogens evolve to evade immune recognition by common MHC alleles, which in turn provides a selective advantage to hosts carrying rare MHC alleles. This cyclical process leads to negative frequency-dependent selection and promotes MHC diversity if two conditions are met: (i) pathogen adaptation must produce trade-offs that result in pathogen fitness being higher in familiar (i.e., host MHC genotype adapted to) vs. unfamiliar host MHC genotypes; and (ii) this adaptation must produce correlated patterns of virulence (i.e., disease severity). Here we test these fundamental assumptions using an experimental evolutionary approach (serial passage). We demonstrate rapid adaptation and virulence evolution of a mouse-specific retrovirus to its mammalian host across multiple MHC genotypes. Critically, this adaptive response results in trade-offs (i.e., antagonistic pleiotropy) between host MHC genotypes; both viral fitness and virulence is substantially higher in familiar versus unfamiliar MHC genotypes. These data are unique in experimentally confirming the requisite conditions of the antagonistic coevolution model of MHC evolution and providing quantification of fitness effects for pathogen and host. These data help explain the unprecedented diversity of MHC genes, including how disease-causing alleles are maintained.
脊椎动物 MHC(主要组织相容性复合体)基因座中前所未有的遗传多样性影响了大多数传染性和自身免疫性疾病的易感性。这些多态性得以维持的进化解释一直存在争议。一种主要的解释是拮抗协同进化(也称为红皇后假说),它假设了一场永无止境的分子军备竞赛,病原体进化以逃避常见 MHC 等位基因的免疫识别,而这反过来又为携带罕见 MHC 等位基因的宿主提供了选择优势。如果满足两个条件,这个循环过程会导致负频率依赖性选择,并促进 MHC 多样性:(i)病原体的适应必须产生权衡,从而导致在熟悉(即宿主 MHC 基因型适应)与不熟悉的宿主 MHC 基因型相比,病原体的适应性更高;(ii)这种适应必须产生相关的毒力模式(即疾病严重程度)。在这里,我们使用实验进化方法(连续传代)来检验这些基本假设。我们证明了一种特定于小鼠的逆转录病毒在多种 MHC 基因座上对其哺乳动物宿主的快速适应和毒力进化。至关重要的是,这种适应性反应导致宿主 MHC 基因型之间存在权衡(即拮抗多效性);与不熟悉的 MHC 基因型相比,病毒适应性和毒力都大大提高。这些数据在实验上独特地证实了 MHC 进化的拮抗协同进化模型的必要条件,并提供了病原体和宿主适应性影响的定量评估。这些数据有助于解释 MHC 基因前所未有的多样性,包括致病等位基因是如何维持的。