Suppr超能文献

功能磁共振成像相关结构的马尔可夫模型:大脑功能连接是小世界网络,还是可分解为多个网络?

Markov models for fMRI correlation structure: Is brain functional connectivity small world, or decomposable into networks?

作者信息

Varoquaux G, Gramfort A, Poline J B, Thirion B

机构信息

Parietal Project-Team, INRIA Saclay-île de France, France.

出版信息

J Physiol Paris. 2012 Sep-Dec;106(5-6):212-21. doi: 10.1016/j.jphysparis.2012.01.001. Epub 2012 Feb 3.

Abstract

Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems.

摘要

通过功能磁共振成像(fMRI)观察到的信号相关性,有望通过血液动力学反应揭示潜在神经群体中的相互作用。特别是,它们突出了一组相互关联的分布式区域,这些区域对应于与不同认知功能相关的脑网络。然而,对神经连接的图论研究给出了不同的图景:一个具有小世界特性的高度整合系统的图景,即局部聚类但在整个结构中有短路径。我们研究fMRI信号的条件独立性属性,即其马尔可夫结构,以找到关于连接结构的现实假设,这些假设是解释观察到的功能连接所必需的。特别是,我们寻求使用可分解图将马尔可夫结构分解为隔离的功能网络:一组强连通且部分重叠的团。我们引入了一种新方法,以有效地在大型强连通图上提取此类团。我们通过测试它们在新数据上学习的模型的拟合优度,比较从功能连接学习不同图结构的方法。我们发现,将结构总结为强连通网络仅对非常大且重叠的网络能给出良好描述。这些结果突出表明,马尔可夫模型是从fMRI信号识别脑连接结构的良好工具,但为此目的,它们必须反映潜在神经系统的小世界特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验