Suppr超能文献

一种用于估计功能磁共振成像数据中动态功能网络连通性的贝叶斯方法。

A Bayesian Approach for Estimating Dynamic Functional Network Connectivity in fMRI Data.

作者信息

Warnick Ryan, Guindani Michele, Erhardt Erik, Allen Elena, Calhoun Vince, Vannucci Marina

机构信息

Department of Statistics, Rice University, Houston, TX (

Department of Statistics, University of California at Irvine, Irvine, CA (

出版信息

J Am Stat Assoc. 2018;113(521):134-151. doi: 10.1080/01621459.2017.1379404. Epub 2018 May 16.

Abstract

Dynamic functional connectivity, i.e., the study of how interactions among brain regions change dynamically over the course of an fMRI experiment, has recently received wide interest in the neuroimaging literature. Current approaches for studying dynamic connectivity often rely on ad-hoc approaches for inference, with the fMRI time courses segmented by a sequence of sliding windows. We propose a principled Bayesian approach to dynamic functional connectivity, which is based on the estimation of time varying networks. Our method utilizes a hidden Markov model for classification of latent cognitive states, achieving estimation of the networks in an integrated framework that borrows strength over the entire time course of the experiment. Furthermore, we assume that the graph structures, which define the connectivity states at each time point, are related within a super-graph, to encourage the selection of the same edges among related graphs. We apply our method to simulated task-based fMRI data, where we show how our approach allows the decoupling of the task-related activations and the functional connectivity states. We also analyze data from an fMRI sensorimotor task experiment on an individual healthy subject and obtain results that support the role of particular anatomical regions in modulating interaction between executive control and attention networks.

摘要

动态功能连接性,即研究大脑区域之间的相互作用在功能磁共振成像(fMRI)实验过程中如何动态变化,最近在神经影像学文献中受到了广泛关注。当前研究动态连接性的方法通常依赖于临时的推理方法,fMRI时间序列通过一系列滑动窗口进行分割。我们提出了一种基于时变网络估计的、有原则的贝叶斯动态功能连接性方法。我们的方法利用隐马尔可夫模型对潜在认知状态进行分类,在一个综合框架中实现对网络的估计,该框架在实验的整个时间过程中借用优势。此外,我们假设定义每个时间点连接状态的图结构在一个超图内是相关的,以鼓励在相关图之间选择相同的边。我们将我们的方法应用于基于任务的模拟fMRI数据,展示了我们的方法如何实现与任务相关的激活和功能连接状态的解耦。我们还分析了来自一名健康个体的fMRI感觉运动任务实验的数据,并获得了支持特定解剖区域在调节执行控制和注意力网络之间相互作用中作用的结果。

相似文献

引用本文的文献

1
Time-varying functional connectivity as Wishart processes.作为威沙特过程的时变功能连接性。
Imaging Neurosci (Camb). 2024 Jun 5;2. doi: 10.1162/imag_a_00184. eCollection 2024.
4
Population-level task-evoked functional connectivity via Fourier analysis.通过傅里叶分析的群体水平任务诱发功能连接性。
J R Stat Soc Ser C Appl Stat. 2024 Mar 14;73(4):857-879. doi: 10.1093/jrsssc/qlae015. eCollection 2024 Aug.

本文引用的文献

6
Time-dependence of graph theory metrics in functional connectivity analysis.功能连接性分析中图形理论指标的时间依赖性。
Neuroimage. 2016 Jan 15;125:601-615. doi: 10.1016/j.neuroimage.2015.10.070. Epub 2015 Oct 27.
9
Bayesian Inference of Multiple Gaussian Graphical Models.多个高斯图形模型的贝叶斯推断
J Am Stat Assoc. 2015 Mar 1;110(509):159-174. doi: 10.1080/01621459.2014.896806.
10
Generalized species sampling priors with latent Beta reinforcements.具有潜在贝塔增强的广义物种抽样先验。
J Am Stat Assoc. 2014 Dec 1;109(508):1466-1480. doi: 10.1080/01621459.2014.950735.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验