Warnick Ryan, Guindani Michele, Erhardt Erik, Allen Elena, Calhoun Vince, Vannucci Marina
Department of Statistics, Rice University, Houston, TX (
Department of Statistics, University of California at Irvine, Irvine, CA (
J Am Stat Assoc. 2018;113(521):134-151. doi: 10.1080/01621459.2017.1379404. Epub 2018 May 16.
Dynamic functional connectivity, i.e., the study of how interactions among brain regions change dynamically over the course of an fMRI experiment, has recently received wide interest in the neuroimaging literature. Current approaches for studying dynamic connectivity often rely on ad-hoc approaches for inference, with the fMRI time courses segmented by a sequence of sliding windows. We propose a principled Bayesian approach to dynamic functional connectivity, which is based on the estimation of time varying networks. Our method utilizes a hidden Markov model for classification of latent cognitive states, achieving estimation of the networks in an integrated framework that borrows strength over the entire time course of the experiment. Furthermore, we assume that the graph structures, which define the connectivity states at each time point, are related within a super-graph, to encourage the selection of the same edges among related graphs. We apply our method to simulated task-based fMRI data, where we show how our approach allows the decoupling of the task-related activations and the functional connectivity states. We also analyze data from an fMRI sensorimotor task experiment on an individual healthy subject and obtain results that support the role of particular anatomical regions in modulating interaction between executive control and attention networks.
动态功能连接性,即研究大脑区域之间的相互作用在功能磁共振成像(fMRI)实验过程中如何动态变化,最近在神经影像学文献中受到了广泛关注。当前研究动态连接性的方法通常依赖于临时的推理方法,fMRI时间序列通过一系列滑动窗口进行分割。我们提出了一种基于时变网络估计的、有原则的贝叶斯动态功能连接性方法。我们的方法利用隐马尔可夫模型对潜在认知状态进行分类,在一个综合框架中实现对网络的估计,该框架在实验的整个时间过程中借用优势。此外,我们假设定义每个时间点连接状态的图结构在一个超图内是相关的,以鼓励在相关图之间选择相同的边。我们将我们的方法应用于基于任务的模拟fMRI数据,展示了我们的方法如何实现与任务相关的激活和功能连接状态的解耦。我们还分析了来自一名健康个体的fMRI感觉运动任务实验的数据,并获得了支持特定解剖区域在调节执行控制和注意力网络之间相互作用中作用的结果。