UCL Institute of Neurology, University College London, London, UK.
J Cell Sci. 2012 Apr 1;125(Pt 7):1796-806. doi: 10.1242/jcs.099176. Epub 2012 Feb 10.
The mechanisms underlying neuronal death following excessive activity such as occurs during prolonged seizures are unclear, but mitochondrial dysfunction has been hypothesised to play a role. Here, we tested this with fluorescence imaging techniques in rat glio-neuronal neocortical co-cultures using low Mg(2+) levels to induce seizure-like activity. Glutamate activation of NMDA receptors resulted in Ca(2+) oscillations in neurons and a sustained depolarisation of the mitochondrial membrane potential, which was cyclosporine A sensitive, indicating mitochondrial permeability and transition pore opening. It was also dependent on glutamate release and NMDA receptor activation, because depolarisation was not observed after depleting vesicular glutamate with vacuolar-type H(+)-ATPase concanamycin A or blocking NMDA receptors with APV. Neuronal ATP levels in soma and dendrites decreased significantly during prolonged seizures and correlated with the frequency of the oscillatory Ca(2+) signal, indicative of activity-dependent ATP consumption. Blocking mitochondrial complex I, complex V or uncoupling mitochondrial oxidative phosphorylation under low-Mg(2+) conditions accelerated activity-dependent neuronal ATP consumption. Neuronal death increased after two and 24 hours of low Mg(2+) levels compared with control treatment, and was reduced by supplementation with the mitochondrial complex I substrate pyruvate. These findings demonstrate a crucial role for mitochondrial dysfunction in seizure-activity-induced neuronal death, and that strategies aimed at redressing this are neuroprotective.
神经元在过度兴奋(如长时间癫痫发作)后死亡的机制尚不清楚,但线粒体功能障碍被认为在其中发挥作用。在这里,我们使用荧光成像技术在大鼠神经胶质神经元皮质共培养物中进行了测试,使用低镁(2+)水平诱导类似癫痫发作的活动。谷氨酸激活 NMDA 受体导致神经元内 Ca(2+)振荡和线粒体膜电位的持续去极化,该过程对环孢菌素 A 敏感,表明线粒体通透性和过渡孔开放。它还依赖于谷氨酸释放和 NMDA 受体激活,因为用液泡型 H(+)-ATP 酶康纳霉素 A 耗尽囊泡谷氨酸或用 APV 阻断 NMDA 受体后,没有观察到去极化。在长时间癫痫发作期间,神经元体和树突中的 ATP 水平显著下降,与振荡 Ca(2+)信号的频率相关,表明与活性相关的 ATP 消耗。在低镁(2+)条件下,阻断线粒体复合物 I、V 或解偶联线粒体氧化磷酸化加速了与活性相关的神经元 ATP 消耗。与对照处理相比,低镁(2+)水平 2 小时和 24 小时后神经元死亡增加,并且通过补充线粒体复合物 I 底物丙酮酸可减少神经元死亡。这些发现表明线粒体功能障碍在癫痫发作活动诱导的神经元死亡中起着至关重要的作用,并且针对这种情况的策略具有神经保护作用。