Suppr超能文献

由于生物学效应的变化,质子治疗中的范围不确定性。

Range uncertainty in proton therapy due to variable biological effectiveness.

机构信息

Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.

出版信息

Phys Med Biol. 2012 Mar 7;57(5):1159-72. doi: 10.1088/0031-9155/57/5/1159. Epub 2012 Feb 14.

Abstract

Traditionally, dose in proton radiotherapy is prescribed as Gy(RBE) by scaling up the physical dose by 10%. The relative biological effectiveness (RBE) of protons is considered to vary with dose-averaged linear energy transfer (LET(d)), dose (d) and (α/β)(x). The increase of RBE with depth causes a shift of the falloff of the beam, i.e. a change of the beam range. The magnitude of this shift will depend on dose and (α/β)(x). The aim of this project was to quantify the dependence of the range shift on these parameters. Three double-scattered beams of different ranges incident on a computational phantom consisting of different regions of interest (ROIs) were used. Each ROI was assigned with (α/β)(x) values between 0.5 and 20 Gy. The distribution of LET(d) within each ROI was obtained from a Monte Carlo simulation. The LET(d) distribution depends on the beam energy and thus its nominal range. The RBE values within the ROIs were calculated for doses between 1 and 15 Gy using an in-house developed biophysical model. Dose-volume histograms of the RBE-weighted doses were extracted for each ROI for a 'fixed RBE' (RBE = 1.1) and a 'variable RBE' (RBE = f (d, α/β, LET(d))), and the percentage difference in range was obtained from the difference of the percentage volumes at the distal 80% of the dose. Range differences in normal tissue ((α/β)(x) = 3 Gy) of the order of 3-2 mm were obtained, respectively, for a shallow (physical range 4.8 cm) and a deep (physical range 12.8 cm) beam, when a dose of 1 Gy normalized to the mid-SOBP was delivered. As the dose increased to 15 Gy, the variable RBE decreases below 1.1 which induces ranges of about 1 mm shorter than those obtained with an RBE of 1.1. The shift in the range of an SOBP when comparing biological dose distributions obtained with a fixed or a variable RBE was quantified as a function of dose, (α/β)(x) and physical range (as a surrogate of the initial beam energy). The shift increases with the physical range but decreases with increasing dose or (α/β)(x). The results of our study allow a quantitative consideration of RBE-caused range uncertainties as a function of treatment site and dose in treatment planning.

摘要

传统上,质子放射治疗中的剂量是通过将物理剂量提高 10%来规定为 Gy(RBE)。质子的相对生物效应 (RBE) 被认为随剂量平均线性能量传递 (LET(d))、剂量 (d) 和 (α/β)(x) 而变化。RBE 的增加会导致束的衰减深度发生偏移,即束射程发生变化。这种偏移的幅度将取决于剂量和 (α/β)(x)。本项目的目的是量化这些参数对射程偏移的依赖关系。使用三个不同射程的双散射束照射由不同感兴趣区域 (ROI) 组成的计算体模。每个 ROI 被分配了 0.5 到 20 Gy 之间的 (α/β)(x) 值。每个 ROI 内的 LET(d) 分布是通过蒙特卡罗模拟获得的。LET(d) 分布取决于束能量,因此也取决于其标称射程。使用内部开发的生物物理模型,在 1 到 15 Gy 之间为 ROI 内的 RBE 值进行了计算。对于“固定 RBE”(RBE = 1.1) 和“可变 RBE”(RBE = f(d,α/β,LET(d))),提取了每个 ROI 的 RBE 加权剂量的剂量-体积直方图,并从剂量的远端 80%的体积百分比差异中获得射程差异。当以归一化为中 SOBP 的 1 Gy 剂量进行照射时,分别在浅层(物理射程 4.8 cm)和深层(物理射程 12.8 cm)束中获得了正常组织 ((α/β)(x) = 3 Gy) 的射程差异约为 3-2 mm。当剂量增加到 15 Gy 时,可变 RBE 降低到 1.1 以下,这会导致射程比使用 1.1 的 RBE 获得的射程短约 1 mm。当比较使用固定或可变 RBE 获得的生物剂量分布时,SOBP 射程的偏移量被量化为剂量、(α/β)(x) 和物理射程(作为初始束能量的替代物)的函数。偏移量随物理射程的增加而增加,但随剂量或 (α/β)(x) 的增加而减小。我们的研究结果允许根据治疗部位和剂量在治疗计划中定量考虑 RBE 引起的射程不确定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验