Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907-2091, USA.
Mol Pharmacol. 2012 May;81(5):729-38. doi: 10.1124/mol.111.077339. Epub 2012 Feb 14.
To refine further the structure-activity relationships of D(1) dopamine receptor agonists, we investigated the roles of three conserved serine residues [Ser198(5.42), Ser199(5.43), and Ser202(5.46)] in agonist binding and receptor activation. These transmembrane domain 5 (TM5) residues are believed to engage catechol ligands through polar interactions. We stably expressed wild-type or mutant (S198A, S199A, and S202A) D(1) receptors in human embryonic kidney cells. These receptors were expressed at similar levels (approximately 2000 fmol/mg) and bound the radioligand [(3)H]R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SCH 23390), although S198A and S199A displayed significant losses of affinity compared with that for wild-type receptors. The endogenous agonist, dopamine, had losses of potency at each of the mutant receptors. We tested cyclohexyl-substituted isochroman, carbocyclic, and chroman bicyclic dopamine analogs and found that the mutations affected the chroman to a lesser extent than the other compounds. These results support our hypothesis that the decreased D(1) activity of chroman analogs results from a ligand intramolecular hydrogen bond that impairs the ability of the catechol to engage the receptor. Sensitivities of these rigid catechol agonists to the effects of the serine mutations were dependent on ligand geometry, particularly with respect to the rotameric conformation of the ethylamine side chain and the distance between the amino group and each catechol hydroxyl. Functional experiments in striatal tissue suggest that the ability to engage TM5 serines is largely correlated with agonist efficacy for cAMP stimulation. These results provide a new understanding of the complexities of D(1) ligand recognition and agonist activation and have implications for the design of rigid catechol ligands.
为了进一步精制 D(1)多巴胺受体激动剂的结构-活性关系,我们研究了三个保守丝氨酸残基 [Ser198(5.42)、Ser199(5.43)和 Ser202(5.46)] 在激动剂结合和受体激活中的作用。这些跨膜域 5 (TM5) 残基被认为通过极性相互作用与儿茶酚配体结合。我们在人胚胎肾细胞中稳定表达野生型或突变型 (S198A、S199A 和 S202A) D(1) 受体。这些受体的表达水平相似(约 2000 fmol/mg),并结合放射性配体 [(3)H]R(+)-7-氯-8-羟基-3-甲基-1-苯基-2,3,4,5-四氢-1H-3-苯并氮杂卓 (SCH 23390),尽管 S198A 和 S199A 与野生型受体相比,亲和力显著降低。内源性激动剂多巴胺在每个突变受体中的效力都降低了。我们测试了环己基取代的异卡波肼、碳环和色烷双环多巴胺类似物,发现突变对色烷的影响小于其他化合物。这些结果支持我们的假设,即色烷类似物的 D(1) 活性降低是由于配体分子内氢键,这削弱了儿茶酚与受体结合的能力。这些刚性儿茶酚激动剂对丝氨酸突变影响的敏感性取决于配体的几何形状,特别是与乙基胺侧链的旋转构象和氨基与每个儿茶酚羟基之间的距离有关。纹状体组织中的功能实验表明,与 TM5 丝氨酸结合的能力在很大程度上与 cAMP 刺激的激动剂效能相关。这些结果提供了对 D(1) 配体识别和激动剂激活复杂性的新认识,并对刚性儿茶酚配体的设计具有启示意义。