Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark.
J Biol Chem. 2012 Apr 6;287(15):11911-23. doi: 10.1074/jbc.M111.312918. Epub 2012 Feb 14.
Mucin-type O-glycosylation is an important post-translational modification that confers a variety of biological properties and functions to proteins. This post-translational modification has a particularly complex and differentially regulated biosynthesis rendering prediction and control of where O-glycans are attached to proteins, and which structures are formed, difficult. Because plants are devoid of GalNAc-type O-glycosylation, we have assessed requirements for establishing human GalNAc O-glycosylation de novo in plants with the aim of developing cell systems with custom-designed O-glycosylation capacity. Transient expression of a Pseudomonas aeruginosa Glc(NAc) C4-epimerase and a human polypeptide GalNAc-transferase in leaves of Nicotiana benthamiana resulted in GalNAc O-glycosylation of co-expressed human O-glycoprotein substrates. A chimeric YFP construct containing a 3.5 tandem repeat sequence of MUC1 was glycosylated with up to three and five GalNAc residues when co-expressed with GalNAc-T2 and a combination of GalNAc-T2 and GalNAc-T4, respectively, as determined by mass spectrometry. O-Glycosylation was furthermore demonstrated on a tandem repeat of MUC16 and interferon α2b. In plants, prolines in certain classes of proteins are hydroxylated and further substituted with plant-specific O-glycosylation; unsubstituted hydroxyprolines were identified in our MUC1 construct. In summary, this study demonstrates that mammalian type O-glycosylation can be established in plants and that plants may serve as a host cell for production of recombinant O-glycoproteins with custom-designed O-glycosylation. The observed hydroxyproline modifications, however, call for additional future engineering efforts.
黏蛋白型 O-糖基化是一种重要的翻译后修饰,赋予蛋白质多种生物学特性和功能。这种翻译后修饰的生物合成具有特别复杂和差异调控的特点,使得预测和控制 O-聚糖附着在蛋白质上的位置以及形成的结构变得困难。由于植物缺乏 GalNAc 型 O-糖基化,我们评估了在植物中建立新的人 GalNAc O-糖基化的要求,目的是开发具有定制 O-糖基化能力的细胞系统。在烟草 Nicotiana benthamiana 的叶片中瞬时表达铜绿假单胞菌 Glc(NAc) C4-差向异构酶和人多肽 GalNAc-转移酶,导致共表达的人 O-糖蛋白底物发生 GalNAc O-糖基化。含有 MUC1 3.5 串联重复序列的嵌合 YFP 构建体,当与 GalNAc-T2 和 GalNAc-T2 和 GalNAc-T4 的组合共表达时,分别通过质谱法确定可被糖基化为多达三个和五个 GalNAc 残基。在 MUC16 和干扰素 α2b 的串联重复序列上也进行了 O-糖基化。在植物中,某些类别的蛋白质中的脯氨酸被羟化,并进一步被植物特异性的 O-糖基化取代;在我们的 MUC1 构建体中鉴定出未取代的羟脯氨酸。总之,这项研究表明,哺乳动物型 O-糖基化可以在植物中建立,并且植物可以作为生产具有定制 O-糖基化的重组 O-糖蛋白的宿主细胞。然而,观察到的羟脯氨酸修饰需要进一步的工程努力。