Suppr超能文献

噬菌体疗法的利弊。

Pros and cons of phage therapy.

作者信息

Loc-Carrillo Catherine, Abedon Stephen T

机构信息

Department of Orthopaedics; The University of Utah; Salt Lake City, UT USA.

出版信息

Bacteriophage. 2011 Mar;1(2):111-114. doi: 10.4161/bact.1.2.14590.

Abstract

Many publications list advantages and disadvantages associated with phage therapy, which is the use of bacterial viruses to combat populations of nuisance or pathogenic bacteria. The goal of this commentary is to discuss many of those issues in a single location. In terms of "Pros," for example, phages can be bactericidal, can increase in number over the course of treatment, tend to only minimally disrupt normal flora, are equally effective against antibiotic-sensitive and antibiotic-resistant bacteria, often are easily discovered, seem to be capable of disrupting bacterial biofilms, and can have low inherent toxicities. In addition to these assets, we consider aspects of phage therapy that can contribute to its safety, economics, or convenience, but in ways that are perhaps less essential to the phage potential to combat bacteria. For example, autonomous phage transfer between animals during veterinary application could provide convenience or economic advantages by decreasing the need for repeated phage application, but is not necessarily crucial to therapeutic success. We also consider possible disadvantages to phage use as antibacterial agents. These "Cons," however, tend to be relatively minor.

摘要

许多出版物都列出了与噬菌体疗法相关的优缺点,噬菌体疗法是利用细菌病毒来对抗有害或致病细菌群体。本评论的目的是在一个地方讨论其中的许多问题。例如,在“优点”方面,噬菌体具有杀菌作用,在治疗过程中数量会增加,往往只会对正常菌群造成最小程度的破坏,对抗生素敏感菌和耐药菌同样有效,通常很容易被发现,似乎能够破坏细菌生物膜,并且固有毒性较低。除了这些优点外,我们还考虑了噬菌体疗法在安全性、经济性或便利性方面的一些因素,但这些因素对噬菌体对抗细菌的潜力来说可能并非至关重要。例如,在兽医应用中动物之间的自主噬菌体转移可以通过减少重复应用噬菌体的需求而提供便利或经济优势,但对治疗成功不一定至关重要。我们还考虑了将噬菌体用作抗菌剂可能存在的缺点。然而,这些“缺点”往往相对较小。

相似文献

1
Pros and cons of phage therapy.
Bacteriophage. 2011 Mar;1(2):111-114. doi: 10.4161/bact.1.2.14590.
3
The use of phages for the removal of infectious biofilms.
Curr Pharm Biotechnol. 2008 Aug;9(4):261-6. doi: 10.2174/138920108785161604.
4
Bacteriophages and their enzymes in biofilm control.
Curr Pharm Des. 2015;21(1):85-99. doi: 10.2174/1381612820666140905112311.
6
Phage therapy of pulmonary infections.
Bacteriophage. 2015 Apr 18;5(1):e1020260. doi: 10.1080/21597081.2015.1020260. eCollection 2015 Jan-Mar.
7
Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future.
BioDrugs. 2021 May;35(3):255-280. doi: 10.1007/s40259-021-00480-z. Epub 2021 Apr 21.
8
Phage therapy: An alternative to antibiotics in the age of multi-drug resistance.
World J Gastrointest Pharmacol Ther. 2017 Aug 6;8(3):162-173. doi: 10.4292/wjgpt.v8.i3.162.
9
Phage therapy pharmacology.
Curr Pharm Biotechnol. 2010 Jan;11(1):28-47. doi: 10.2174/138920110790725410.
10
Phage therapy pharmacology: calculating phage dosing.
Adv Appl Microbiol. 2011;77:1-40. doi: 10.1016/B978-0-12-387044-5.00001-7.

引用本文的文献

1
Alternatives to antibiotics for sustainable livestock production in the context of the One Health approach: tackling a common foe.
Front Vet Sci. 2025 Aug 13;12:1605215. doi: 10.3389/fvets.2025.1605215. eCollection 2025.
2
Bacteriophage Therapy: Discovery, Development, and FDA Approval Pathways.
Pharmaceuticals (Basel). 2025 Jul 26;18(8):1115. doi: 10.3390/ph18081115.
3
Design of respirable sprayed microparticles of encapsulated bacteriophages.
Front Drug Deliv. 2023 Jun 14;3:1209534. doi: 10.3389/fddev.2023.1209534. eCollection 2023.
5
The Ability of Bacteriophages to Reduce Biofilms Produced by Isolated from Corneal Infections.
Antibiotics (Basel). 2025 Jun 20;14(7):629. doi: 10.3390/antibiotics14070629.
6
Novel MRSA-targeting phage MetB16: Genomic features, structural insights, and therapeutic applications.
Turk J Biol. 2025 Feb 14;49(3):292-308. doi: 10.55730/1300-0152.2746. eCollection 2025.
8
Current Clinical Laboratory Challenges to Widespread Adoption of Phage Therapy in the United States.
Antibiotics (Basel). 2025 May 29;14(6):553. doi: 10.3390/antibiotics14060553.
9
Protecting bacteriophages under UV irradiation with brilliant blue FCF for targeted bacterial control.
Biofilm. 2025 May 9;9:100286. doi: 10.1016/j.bioflm.2025.100286. eCollection 2025 Jun.
10
Bacteriophages as Targeted Therapeutic Vehicles: Challenges and Opportunities.
Bioengineering (Basel). 2025 Apr 29;12(5):469. doi: 10.3390/bioengineering12050469.

本文引用的文献

1
Bacteriophages as potential new therapeutics to replace or supplement antibiotics.
Trends Biotechnol. 2010 Dec;28(12):591-5. doi: 10.1016/j.tibtech.2010.08.001. Epub 2010 Aug 31.
2
3
Effect of antibiotics in the environment on microbial populations.
Appl Microbiol Biotechnol. 2010 Jul;87(3):925-41. doi: 10.1007/s00253-010-2649-5. Epub 2010 May 28.
4
Bacteriophage host range and bacterial resistance.
Adv Appl Microbiol. 2010;70:217-48. doi: 10.1016/S0065-2164(10)70007-1. Epub 2010 Mar 6.
5
Phage therapy in clinical practice: treatment of human infections.
Curr Pharm Biotechnol. 2010 Jan;11(1):69-86. doi: 10.2174/138920110790725401.
6
Phage therapy pharmacology.
Curr Pharm Biotechnol. 2010 Jan;11(1):28-47. doi: 10.2174/138920110790725410.
7
Designing phage therapeutics.
Curr Pharm Biotechnol. 2010 Jan;11(1):15-27. doi: 10.2174/138920110790725348.
8
Phage choice, isolation, and preparation for phage therapy.
Curr Pharm Biotechnol. 2010 Jan;11(1):2-14. doi: 10.2174/138920110790725311.
9
Purification of the Staphylococcus aureus bacteriophages VDX-10 on methacrylate monoliths.
J Virol Methods. 2010 Jun;166(1-2):60-4. doi: 10.1016/j.jviromet.2010.02.020. Epub 2010 Feb 25.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验