Suppr超能文献

基于三维颈动脉分叉模型的钙化对斑块机械稳定性的影响。

Effect of calcification on the mechanical stability of plaque based on a three-dimensional carotid bifurcation model.

机构信息

School of Aerospace, Mechanical and Manufacturing Engineering, and Health Innovations Research Institute (HIRi), RMIT University, Australia.

出版信息

BMC Cardiovasc Disord. 2012 Feb 15;12:7. doi: 10.1186/1471-2261-12-7.

Abstract

BACKGROUND

This study characterizes the distribution and components of plaque structure by presenting a three-dimensional blood-vessel modelling with the aim of determining mechanical properties due to the effect of lipid core and calcification within a plaque. Numerical simulation has been used to answer how cap thickness and calcium distribution in lipids influence the biomechanical stress on the plaque.

METHOD

Modelling atherosclerotic plaque based on structural analysis confirms the rationale for plaque mechanical examination and the feasibility of our simulation model. Meaningful validation of predictions from modelled atherosclerotic plaque model typically requires examination of bona fide atherosclerotic lesions. To analyze a more accurate plaque rupture, fluid-structure interaction is applied to three-dimensional blood-vessel carotid bifurcation modelling. A patient-specific pressure variation is applied onto the plaque to influence its vulnerability.

RESULTS

Modelling of the human atherosclerotic artery with varying degrees of lipid core elasticity, fibrous cap thickness and calcification gap, which is defined as the distance between the fibrous cap and calcification agglomerate, form the basis of our rupture analysis. Finite element analysis shows that the calcification gap should be conservatively smaller than its threshold to maintain plaque stability. The results add new mechanistic insights and methodologically sound data to investigate plaque rupture mechanics.

CONCLUSION

Structural analysis using a three-dimensional calcified model represents a more realistic simulation of late-stage atherosclerotic plaque. We also demonstrate that increases of calcium content that is coupled with a decrease in lipid core volume can stabilize plaque structurally.

摘要

背景

本研究通过呈现三维血管建模来描述斑块结构的分布和组成,目的是确定由于斑块内脂质核心和钙化的影响而导致的机械性能。数值模拟已被用于回答帽厚度和脂质中钙分布如何影响斑块的生物力学应力。

方法

基于结构分析的动脉粥样硬化斑块建模证实了斑块力学检查的合理性和我们模拟模型的可行性。对模拟动脉粥样硬化斑块模型的预测进行有意义的验证通常需要检查真实的动脉粥样硬化病变。为了更准确地分析斑块破裂,应用流固耦合对三维血管颈动脉分叉建模。将特定于患者的压力变化施加到斑块上以影响其脆弱性。

结果

用不同程度的脂质核心弹性、纤维帽厚度和钙化间隙(定义为纤维帽和钙化团块之间的距离)对人类动脉粥样硬化动脉进行建模,这是我们破裂分析的基础。有限元分析表明,钙化间隙应保守地小于其阈值以保持斑块稳定性。结果为研究斑块破裂力学提供了新的机制见解和方法上合理的数据。

结论

使用三维钙化模型进行结构分析代表了对晚期动脉粥样硬化斑块的更现实模拟。我们还证明,钙含量的增加伴随着脂质核心体积的减少可以稳定斑块的结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d72/3310807/0f8a32720716/1471-2261-12-7-1.jpg

相似文献

4
3D computational parametric analysis of eccentric atheroma plaque: influence of axial and circumferential residual stresses.
Biomech Model Mechanobiol. 2012 Sep;11(7):1001-13. doi: 10.1007/s10237-011-0369-0. Epub 2012 Jan 7.
5
Effects of varied lipid core volume and fibrous cap thickness on stress distribution in carotid arterial plaques.
J Biomech. 2008 Oct 20;41(14):3053-9. doi: 10.1016/j.jbiomech.2008.07.011. Epub 2008 Sep 10.
6
Carotid plaque vulnerability: a positive feedback between hemodynamic and biochemical mechanisms.
Stroke. 2011 Dec;42(12):3502-10. doi: 10.1161/STROKEAHA.111.627265. Epub 2011 Oct 13.
8
Nonlinear multiscale analysis of coronary atherosclerotic vulnerable plaque artery: fluid-structural modeling with micromechanics.
Biomech Model Mechanobiol. 2021 Oct;20(5):1889-1901. doi: 10.1007/s10237-021-01483-z. Epub 2021 Jun 30.
10
How does juxtaluminal calcium affect critical mechanical conditions in carotid atherosclerotic plaque? An exploratory study.
IEEE Trans Biomed Eng. 2014 Jan;61(1):35-40. doi: 10.1109/TBME.2013.2275078. Epub 2013 Jul 31.

引用本文的文献

1
Sex differences in features of atherosclerotic plaques as revealed by various imaging techniques: historical review.
Front Physiol. 2025 May 26;16:1579885. doi: 10.3389/fphys.2025.1579885. eCollection 2025.
2
Cardiovascular computed tomography in cardiovascular disease: An overview of its applications from diagnosis to prediction.
J Geriatr Cardiol. 2024 May 28;21(5):550-576. doi: 10.26599/1671-5411.2024.05.002.
3
Integrating Computational and Biological Hemodynamic Approaches to Improve Modeling of Atherosclerotic Arteries.
Adv Sci (Weinh). 2024 Jul;11(26):e2307627. doi: 10.1002/advs.202307627. Epub 2024 May 5.
4
Biomimicking Atherosclerotic Vessels: A Relevant and (Yet) Sub-Explored Topic.
Biomimetics (Basel). 2024 Feb 23;9(3):135. doi: 10.3390/biomimetics9030135.
5
Engineering innovations in medicine and biology: Revolutionizing patient care through mechanical solutions.
Heliyon. 2024 Feb 15;10(4):e26154. doi: 10.1016/j.heliyon.2024.e26154. eCollection 2024 Feb 29.
6
The interplay of collagen, macrophages, and microcalcification in atherosclerotic plaque cap rupture mechanics.
Basic Res Cardiol. 2024 Apr;119(2):193-213. doi: 10.1007/s00395-024-01033-5. Epub 2024 Feb 8.
8
Stroke risk study based on deep learning-based magnetic resonance imaging carotid plaque automatic segmentation algorithm.
Front Cardiovasc Med. 2023 Feb 24;10:1101765. doi: 10.3389/fcvm.2023.1101765. eCollection 2023.
9
Bone age recognition based on mask R-CNN using xception regression model.
Front Physiol. 2023 Feb 14;14:1062034. doi: 10.3389/fphys.2023.1062034. eCollection 2023.

本文引用的文献

4
CT virtual intravascular endoscopy assessment of coronary artery plaques: a preliminary study.
Eur J Radiol. 2010 Jul;75(1):e112-9. doi: 10.1016/j.ejrad.2009.09.007. Epub 2009 Sep 24.
6
7
Carotid plaque, arterial stiffness gradient, and remodeling in hypertension.
Hypertension. 2008 Oct;52(4):729-36. doi: 10.1161/HYPERTENSIONAHA.108.115972. Epub 2008 Sep 8.
8
Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling.
J Biomech. 2008;41(5):1111-8. doi: 10.1016/j.jbiomech.2007.11.029. Epub 2008 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验